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STABILITY DOMAINS IN THE FEEDBACK GAINS SPACE
FOR AN OVERHEAD CRANE WITH FLEXIBLE CABLE

A.M.Formal'sky

Institute of Mechanics, Moscow Lomonosov State University,
1, Mitchurinsky Prospect, Moscow 119899, Russia. E-mail: formal@inmech.msu.su

Abstract: The problem of stabilization of desired crane position and load at the flexible cable tip is considered.
The stabilizing control is linear feedback. This control law depends on the platform position, velocity and
integral of this position. It contains also the information about the angle between the vertical and the cable at the
point of its connection to the platform and angular velocity, about the cable deformation. The time delay in the
control loop is taken into account. Mathematical model of the system consists of differential equations with

partial and ordinary derivatives.
The general equations describing boundaries of asymptotic stability domain are obtained. In the space of the

feedback gains, the regions of asymptotic stability are designed for different particular cases. With feedback
coefficients from these domains the desired equilibrium of the system is asymptotically stable.

Keywords: overhead crane, flexible cable, desired equilibrium, linear feedback control, boundary value

problem, asymptotic stability, eigenvalues

1. Introduction

The problem of crane motion control is considered
for example in monograph [1]. The problem of the
crane stabilization is studied in the papers [2, 3]
taking into account the flexibility of the cable. The
stability problem is considered by using Lyapunov
functions. This paper deals with the same problem of
the crane stabilization. We examine the cable as the
object with distributed parameters. Mathematical
model of the system contains as in [2, 3] partial
differential equation with boundary conditions. The
principal goal of this paper is to find such linear
feedback gains that the desired crane equilibrium
would be asymptotically stable. Unlike the papers [2,
3], we study here the infinite spectrum of the
boundary value problem and search such conditions
that the real parts of all eigenvalues would be
negative. The necessary and sufficient conditions are
found in different particular cases more or less
general. These results are formulated in the
terminuses of the asymptotic stability domains in the
space of the feedback gains.

The control problems for the systems with
distributed parameters are examined in particular in

monographs [4, 5], in the papers [6, 7].
The article is organized as follows: In Section 2

the motion equations of the system are described
both with dimension and dimensionless variables;
Section 3 contains the examined expression for linear
feedback control and the stability problem statement,
here the mathematical model of a crane with rigid
cable is described as well; characteristic equation is
found in Section 4, this section contains also the
general equations for the boundaries of asymptotic
stability domain; the stability domains in the
feedback gains space for different cases are presented
in Section 5, they are compared with stability
domains for a crane with rigid cable; the influence of

the cable deformation signal in the feedback is
considered in Section 6; Section 7 contains our

conclusion.

2. Mathematical Model

Let us consider the motion of an overhead crane
along a horizontal straight line N (Fig. 1).
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Figure 1: Crane with flexible cable.

This system consists of a motorized crane platform of
mass M, flexible homogeneous cable of length L with
constant cross-section and a load of mass m. Let X
denotes the horizontal displacement of the platform
from some fixed position, F force applied to the
platform from the motor, P horizontal force applied

to the platform from the cable, p=const the linear

cable density. We assume that the load is a material
point (see Figure 1). Using these notations and
assumptions we write the equations which govern a
behavior of the described system:
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MX(t)=F+P, P=-(m+pL)gax(L,t),
Y

(2.1)

a 1X r
P= a LG(Y)G(y) Lx , G(Y)= (m+py)g

Here x=x(y,t) is the horizontal displacement of the
deformed cable point (dependent variable), y its

vertical coordinate (independent variable), ax the
Y

angle between the vertical and the tangent to the

cable at the point y, aY (L,t) is the inclination of the

cable tangent at the connection point to the platform
with respect to the vertical, G(y) the weight of the
load together with "lower" part of the cable, g is
gravity acceleration. The origin of the inertial
coordinate frame XOY is placed on the horizontal

crossed the load m (Fig. 1). We neglect the vertical
displacement of the load as a value of second order.
The straight line N is described in this coordinate
frame XOY by equation y=L. We assume here that

the cable is non -stretching, its transversal and angular

deformations are small . In the book [9], the motion
equation of the hanging chain is written and it is
similar to the third Eq. (2.1).

The following boundary conditions are added to
the third Eq. (2.1):

z
x(L, t) = X (t) , atZ (0, t) =gay (0, t) (2.2)

The second condition (2.2) is the motion equation of
the load along axis OX. In [3], instead this condition

the equality ay (0, y) = 0 is considered.

We introduce dimensionless variables x X

y', u, t` using the formulas:

MgMx=Lx', X =LX', y=Ly F= u,
P
L

(2.3)

t='tt' (T2=pL2/mg)
Substituting relations (2.3) into Eqs. (2.1), (2.2)

and omitting the asterisks we rewrite them in the
form

x(Y,0-Rpy+OAY,t)1 =0,
(2.4)

x(0,t)-l.tx'(O,t)=0, i(1,t)_-v(1+µ)x( l,t)+u

(µ = pL/m, v = pL/M )

Here ' means the differentiation with respect to
variable y.

3. The Problem Statement and Control

The boundary-value problem (2.4) has the solution
x(y,t) O, (3.1)

if u=O (no control is applied). This solution describes
the crane, the cable and the load in the equilibrium.
Let this equilibrium be the desired (prescribed) one.
Now let us find the control u that ensures asymptotic
stability of the desired equilibrium (3.1). We examine
the stabilizing control as a linear feedback

Ti +u=-/30x(l,t)-/3,z(l,t)-/32 f x(l,^)dC-
0

-S0x'(l,t)-S,x(1,t)-^6nx"(y",t) (3.2)
n=i

Here TZO is dimensionless time delay in the control

loop; constant values t30, /3, , N2 are the feedback

gains for the platform position, its derivative and

integral; the constants So and 6, are the feedback

gains for the angle between the vertical and the cable
at the point of its connection to the platform and

angular velocity; v" (n=1,N) is the constant

feedback gain with respect to the cable deformation

at the point y, . The first three terms in (3.2)

describe the usual PID controller on the position of
the platform.

The function (3.1) satisfies the Eqs. (2.4), (3.2).
The linear boundary-value problem (2.4), (3.2) has
an infinite number of eigenvalues (an infinite
spectrum). The more concrete statement of the
problem of asymptotic stability of the solution (3.1)
is the following: it is required to find, in the space of
the feedback (3.2) gains, the domain where all the
eigenvalues X are such that Re(;L)<O.

3.1. Rigid Cable

Together with (2.4) we will examine the motion
equations of the overhead crane with absolutely rigid
cable. Using dimensionless variables (2.3) it is
possible to write these equations [1] in the form

(1+y/2)z- (I+p/3)4 -(1 +,t/2)p(p = 0,
(3.3)

(µ/v+y+ 1)z-(1+ pt/2)0 = uµ/v

Here rp is the angle between the cable and the vertical
calculated clockwise . Control law in this case has the
form

Tu+u/3,z-/32 f x(1,c)dc-S0tp-S,rp
0

(3.4)

because the cable deformation is neglected here.
We will compare lower the stability domains for

the system (2.4), (3.2) and the system (3.3), (3.4).

4. Characteristic Equation

Let us search the solution of the system (2.4), (3.2) in
the form

x(y,t) =Ce^`K(y) ,
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where C is a constant , A an eigenvalue , K(y) an
eigenfunction . For this eigenfunction we obtain the
boundary-value problem

A2 K(y) - [(µy + l)K'( y)] = 0 (4.1)

A2K(0) -µK'(0) = 0 (4.2)

K(1)+K'(l)(R+l)vjT,1 +1),.+

+(/3„A +^ 72
+ /32)K(l)+AK'(1)(5„+AS,)+

N

+AY_6,K"(yn) (4.3)
n=1

It is possible to reduce the Eq. (4.1) to Bessel
equation using new independent variable instead y [3,
8, 9]. But we will consider more simple case [10]
when the mass of the cable is negligible with respect
to the load mass

µ«] (4.4)
Dimensionless variable y changes in the interval

[0,1 1, therefore , under assumption (4.4) we neglect
the term µy in the Eq . (4.1) and it takes the form

K`(y)-)?K( Y)=0 (4.5)

In the equality (4.3), we will use v instead expression
(P+ I*

We represent the solution K(y) of the system (4.5),
(4.2), (4.3 ) in the form

K(y) = Ae'ty +Be-A'' (4.6)

where A and B are unknown constants . Substituting
function (4,6) into boundary conditions (4.2), (4.3),
we obtain a system of two linear homogeneous
equations in constants A, B. The determinant of this
system is characteristic one. It is always zero , if A=O.
But corresponding eigenfunction K(y) is nonzero
when /3„ = Q2 = 0 only. All nonzero eigenvalues A

satisfy the following equation

A(A) = A2 (TA+ l)[AR1(4)+vR2(A)J+

+(QoA+ j3,A2 +/32)R,())+.12 (50 +A51 )R2(A)+
N

+A3Ia„R3(A,Y.)=0 (4.7)
n<<

(R1(A)=AshA+µchA, R2(A)=AchX+pshA,

R3(A., Y) = Ash(Ay)+µch(Ay))

We see from the expression (4.7) that A(0) = µ/i2

and A(+-) = +0 . Therefore, if P2 <0, the Eq. (4.7)

has a real root A>O and the solution (3.1) is unstable.
Let be A, (A) = A(A)/A. Then for I'2 =0 we have

A, (0) = µ/3o and A,(+-) = +-o. Therefore, if p2 =0

and J3„ <0 (positive position feedback), the Eq. (4.7)

has a root A>0 and solution (3.1) is unstable. Let be
now A2 (A) = A, (A)/A . Then for X32 = f3o =0 we

have A 2 (0) = µ/3, and A 2 (+'0) _ +o o. Therefore, if

(32 = /3„ =0 and f3, <0 (negative damping), the Eq.

(4.7) has a root A>0 and solution (3.1) is not stable.
These conclusions we use below when study the

asymptotic stability domains in the feedback gains

space.
The necessary and sufficient conditions of

asymptotic stability are obtained below by method of
D-subdivisions of Neimark [11]. To this end, we
substitute A='w, where i is imaginary unit and w real
value, into the Eq. (4.7) and equate both the real and
imaginary parts to zero

Tw3 [9S, (CO) +vS1 (o))1+02 - /3,(02 )S, ((0) +

+co 3 5,S2(w) = 0

(4.8)

w2 [aS, (w) +vS2 (w)]- /3owS, (w) + w26„S2 ((0) +

[[
v

+w36n.S3(w, v^) =0

(S,(w)=R,(iw)=µcosw-wsinw,

S2(w)=-iR2 ( iw)=wcosw+14 sinw,

S3 (a)' Y ) = R3(iw, y) = µcos(wy)-wsin(wy) )

Eqs. (4 .8) define, in parameter space of the

system, the image of the imaginary axis X=ia
--oo<wcco. The stability domain boundary consists of
parts of surface (4.8). Relations (4.8) remain

unchanged , if w is replaced by -ca Therefore, the
boundaries of an asymptotic stability domain can be
obtained using the Eqs . (4.8) with 05w<co only.

5. Stability Domains

We will construct the regions of asymptotic stability
analytically for different particular cases.

Let us consider initially the usual PD controller. It
means that we suppose first that

T=O, f 2 - 0 , Uo =0, S, = 0 , cT =0 (n=1,N )
(5.1)

If P2 = 0 , i.e. the integral in the control law (3.2) is

absent , we must first of all divide both sides of the
characteristic Eq. (4.7) by A and of Eqs. (4.8) by to.
Instead of (4.8) under conditions (5.1) we obtain
simple equations

N, 1(to) = 0 , (J3 - w2)S1(w) -VwS2 ((0) = 0 (5.2)

Setting in (5.2) a)--O, we obtain equation /30 = 0.

Each function S,(w) and S,(w) has infinite number

of zeros for any u. The zeros of these functions are

different and moreover alternates . Thus, with av0 the

Eqs. (5.2) are valid if P1 = 0 only, and these

equations can be rewritten in the form

PO =w2 +vwS2(w)/S,(w), /31 =0 (5.3)

As to changes from 0 to +oo the point (5.3) traverses
the axis p, = 0 from - to +00 an infinite number of

times. Hence the boundaries of asymptotic stability
domain, if there is one, belong to the straight lines

A„ = 0 and f3, = 0. It follows from the Section 4

that outside the region /30 >-0, /31 ? 0, the Eq. (4.7)
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has a root I with ReA>O. Thus, under conditions (5.1)
the asymptotic stability region, if it exists, can be
described by inequalities

/30>0, /3,>0 (5.4)

Let us prove by method described in [15-17] that
the stability domain D is actually an open region
(5.4). We multiply both sides of the Eq. (4.5) by the

conjugate function K(y) and integrate from zero to

one. Using boundary conditions (4.2), (4.3), we
obtain

x2 [vJkK(y)dy+K(1)K(1)+µvK(0)K(0)l +
0 J

A/3, K(1)K(1)+/3„K(I)K(l)+vJ K'(y)K'(y)dy = 0
0

In the domain (5.4) the coefficients of this quadratic
equation in A are non-negative. Thus, in this domain
all eigenvalues have non-positive real parts. Since

Red,=O only if f3, = 0 or /3, = 0 , inside that region

for all ^, ReA<0. The assertion is proved.
In the case (5.1), also the region of asymptotic

stability of the equilibrium state of system (3.3), (3.4)
can be described by inequalities (5.4). It can be
proved using Hurwitz conditions with assumption
(4.4) and without it. Thus the flexibility of the cable
has no influence on the stability domain in the case
(5.1).

Suppose now that T>O and consider more general
case than (5.1), namely

/32 =0, S„ =0, 3, =0, 6„ =0 (n=1,N) (5.5)

If f32 = 0 , we divide firstly the Eqs. (4.8) by co. Then

substituting into the Eqs. (4.8) first o. 0, and then
w>O, we find that the boundary of the stability
domain is made up of segments of the straight line
/30 = 0 and the straight line

/30 = CO' +vcaS2((O)/S,(w),
(5.6)

/3, =Tw2 +Tvo.S2((O)/S,(w) (OSw<c)
The parametric Eqs. (5.6) (w is the parameter)
describe a straight line, since they imply that

l3, =T/30 (5.7)

As the quantity w changes from 0 to 00, the point
(5.6) traverses the straight line (5.7) an infinite
number of times. Let D(T) (see Figure 2) denotes the
open domain

/30>0, 0,>T130 (5.8)

In the domain D(T), all the eigenvalues are such that

ReA. 0, since Red,=O only if fan = 0 or /3, =T/30 . Let

us consider the set D(T) in the space of the three

parameters /30 , f3, , T for 0-<T<,-. As 7' -^ 0 we

have D(T)-^D, where D is the asymptotic stability
domain in the case (5.1). It follows from Rouche
theorem [14] that the eigenvalues A are continuous
functions of T. Consequently, the real parts of all

eigenvalues are negative, if and only if

/30 , /3, e D(T).

Figure 2 : Stability domain in the case (5.5)

In the case (5.5), the stability domain of the
equilibrium of the system (3.3), (3.4) is described by
inequalities (5.8) as well (under condition (4.4) and
without it). Hence, as in the case (5.1), the elasticity
of the cable has no influence on the stability.

Let us study now more general case than (5.5).

Suppose that T>O and f 2 # 0 , but as before

S0 =0, S, =0, 6,, =0 (n=1,N) (5.9)

If /32 < 0, solution (3.1) of system (2.4), (3.2) is

unstable (see Section 4). We shall assume therefore
that /32 >0. Let us choose some positive quantity

N2 and construct the stability domain D(T, N2) in the

plane of the coefficients /30 , /3, .

The boundary of the region D(T, /32) is described

by parametric equation similar to (5.6) but with

additional term /32/W2 in the second of them

/3 =w2 +vcaS2((O)/S,((O),
(5.10)

/3, =Tw2 +TvWS2 ( w)/S,(w)+/32/W2

(05w<w,)

Here w , is the first positive root of the function

S, (w) As co -40, the curve (5.10)

,tends asymptotically to the axis /3, , and as w -* co,

tends asymptotically to the straight line

N, =Tf3o + 132/w, (5.11)

This line is parallel to the line (5.7) and shifted

upward relative to it by the value /32/w2 . It is

obviously that the domain D(T, f32) is located inside

the domain D(T). If the time delay T in the control

loop or (and) coefficient f32 increases , the region

D(T, Y2) decreases . The asymptotic stability domain

D(T, f32) is shown in Figure 3 . Its boundary is

located between two asymptotes - axis /3, and line

(5.11), and similar to a hyperbole.
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In the case ( 5.9) the degree of the characteristic

polynomial of system (3.3), (3.4) equals six. The
Hurwitz inequalities for this polynomial are
cumbersome , therefore we do not write them here.

But we can show that the functions /30(w) , J3,(w )

from (5.10) satisfy these inequalities strictly and

domain D(T, /32) is located strictly inside the stability

domain of the system with rigid cable . Hence, unlike

the previous cases, in the case ( 5.9) the asymptotic
stability domain decreases, if we take into account
the cable flexibility. Thus, the study of the crane
stability neglecting the cable elasticity can be
misleading.

Figure 3 : Stability domain in the case (5.9)

Suppose now that S0 #0 and take more general

case than (5.1), namely,

T=O, R2 = 0 , 6, = 0, q, =0 (n=1, N) (5.12)

In this case, instead of (4.8) we obtain the equations
(xS1 (w) = 0

(5.13)

(NO-w2)SI(w) -(v +Ho )Cl 52 (w) =0

under assumption aO we obtain equation /30 = 0.

The equalities (5.13) exist for all av0, if and only if
(3, = 0 . Let w = wk , where wk (k= 1, 2, ...) are

positive zeros of the function S,( w), then equalities

(5.13) exist, if
v+S0 =0 (5.14)

Prove that the asymptotic stability domain in the

space of the gains 60 is the set

^o>0, p^>o, 60>-v (5.15)

Under conditions (5.1), in the domain (5.4) which is
located inside the domain (5.15), the real parts of all
eigenvalues are negative. At the same time in the
domain (5.15), there is no eigenvalues with zero real
parts. It follows from Rouche theorem [14] that the
eigenvalues A are continuous functions of SO.

Therefore, in the domain (5.15) the eigenvalues with
positive or zero real parts are absent. Under the
conditions (5.12) the characteristic Eq. (4.7) takes the

form

d(i1) =(^2 +/3,.k +po )Ri(d) +A(v +6, )R2(;t ) =(1

(5.16)

Show now that the Eq. (5.16) gets eigenvalues with
positive real parts, when the feedback gains forsake
domain (5.15) crossing the boundary (5.14). Under

condition (5.14) (60 = -v ) this equation has the

roots A, = iwk (k=1, 2, . . . ) and two roots of

equation A2 + /3,A + /30 = 0. Let be 6, = -v - 460

and A = Ak + AA0 ; here d6, > 0 and AX, are small

variations. Linearise the Eq. (5.16) in a vicinity of the

point Ho=
((
-v, A=A,

(A +$1A,, +/30 )Rf(,k,
)^k -/LkQ60 RI(A,. )

From this linear equation we obtain

w4 (,u2 +wk) c^6 0RthA = 2 2
2 2 twk +Y- +,U)

If ASa> 0 , then. Re&AI > 0. Hence, the infinite

number of eigenvalues becomes with positive real

part, when the point in the feedback gains space
crosses the boundary (5.14). The eigenvalues A are
continuous functions of the system parameters and
they can be with zero real part on the boundaries of
the domain (5.15) only. Therefore outside the region
(5.15), there are eigenvalues with positive real parts
and (5.15) is the asymptotic stability domain.

Using Hurwitz criteria we can show that for the
system (3.3), (3.4) the stability domain is described

by inequalities (5.15) as well.
We can consider more general case than (5.12),

namely, when S, # Q, but

T=O, !32 = 0. a,, = 0 (n=1, N) (5.17)

In this case, the asymptotic stability domain located
strictly inside the stability domain for the crane with
rigid cable. Hence, it is better to take into account the
cable flexibility in the case (5.17).

6. Influence of the Cable Deformation Feedback

Let us consider the case when control law (3.2)
contains the information about the cable deformation.

Suppose that

T>0, P2 0, So =0, 51 =0, a, *0, Y1 = I,

a. =0 (n=2,N) (6.1)

These relations mean that the signal about the cable
deformation in the point of its connection to the
platform is taken into account.

In the case (6.1), the stability domain D(T,a, ) is

located in the first quadrant of the plane f30 , (3, . It is

bounded by the semi axis /30 = 0 , /3, >- 0 and the

cutup
(30 =w2 (I+a,)+vcvS2(w)/S,(w)

(6.2)

p,=Tw2+TVcvS2( (O)/S,((O) (05w<w0
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If a, = 0, the curve (6.2) becomes the straight line

(5.6) or (5.7). If a, >0, the curve (6.2) is located

lower than the line (5.7) and D(T)c D(T,a,) ; the

domain D(T,a, ) is greater than domain D (T) (5.8)

(see Figure 4).
If the gain a, increases, the curve (6.2),

remaining in the first quadrant, lowers and the

domain D(T,a, ) increases. As a, ->oo, the curve

(6.2) tends to the semi-axis f3, = 0, 0, 0 and, in

spite of the time delay T, the domain D(T,a,) tends

to the stability domain D (5.4) for the cases of
flexible or rigid cable under conditions (5.1). Note,
that it is for ideal deformation signal.

Figure 4: Stability domain in the case (6.1)

Thus, we can enlarge the asymptotic stability
domain by introducing the deformation signal into
the feedback control. So, the information about the
cable deformation in some sense compensates the
time delay in the control loop.

7. Conclusion

The main goal of this paper is to describe the
complete set of feedback gains to ensure the
asymptotic stability of the equilibrium of the
overhead crane with a load at the flexible cable tip.
We have obtained the general analytical relations
describing the boundaries of the stability domain.
Using obtained analytical formulas we have found
the structure of stability domain in different cases.
The designed stability domains are compared with
corresponding domains for the crane with rigid cable.
In all considered cases the stability domain for the
crane with flexible cable belongs to, and in some
cases less than, the domain for the crane with rigid
cable. Hence, the cable elasticity should not be
ignored in the problem of stability. The stability
domain can be prolonged by using the deformation
signal in the control law.

Using our formulas it is possible as well to
construct numerically in the space of feedback
coefficients the boundary of stability domain for any
given parameters of crane, cable and load.
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