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Abstract Automating the excavation function of an excavator is a complex control. problem, because of the
nature of the interaction between the cutting tool and the medium and the many parameters that are involved
in the process. A fundamental question that is not yet resolved is the choice of parameters to b used in a
feedback loop for the control of the process, and the control algorithm. Based on a previous proposition for
the control algorithm to be used for this purpose, knowledge about the forces involved may be used for
adjusting the motion of the bucket. In this paper, some results of experimental measurements of the
excavation forces are presented. These forces cannot be measured directly on the bucket, but the kinematic
and dynamic relations can serve for this purpose. The paper talks about the development of these relations,

and then the results are presented and discussed.
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INTRODUCTION

Automation of excavation necessarily implies that
an excavator carries out its function without being
operated by a person. This function consists of ope or
mare of cutting, digging, scooping and penetration into
the medium to be excavated. Excavating machines are
of different form, depending on the environment and/or
the application. For example a backhoe is most suitable
for excavating below ground, whereas a power shovel is
designed to load its bucket from a higher level. Withall
excavating machines, the bucket or the excavating tool
must interfere with the material to be excavated and,
necessarily, must overcome the inherent resistance that
it experiences from the medium. In other words, the
tool must overcome the resistance from the environment
it is dealing-with, This resisting force, however, isa
function of a large number of parameters dependent
upon the medium, the tool and the environment. It also
depends on the motion of the excavator’s tool. In this
sense, the value and the direction of the resistive force
has a significant variation during the course of an
excavation task, since it has a stochastic nature and, as
yet, has not been mathematically modeled.

Considering the fact that the normally curvilinear
motion of the bucket is provided by a set of actuators, it
is essential that the required force by each actuator be
furnished at each instant. This implies that each
actuator must provide sufficient power in order to
maintain the motion of the bucket. In practice, this is
possible only if an enormous amount of power is
available at each actuator, which is generally
uncconomic. In the case of @ human operator, a skilled
person continuously adjusts the tool motion, by using
his intelligence and experience, so that the final goal of
excavation is accomplished. In fact, he adjusts the -
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motion when he feels that the tool motion is not what
was intended. Otherwise, not only the task is not
carried out properly, but the machine elements may get
damaged, tpo.

Various approaghes have been suggested on the
matter and numerous work has been reported. Some of
the reported works are listed in the References of the
present paper. The main issue in automated excavation
is successfully filling the bucket. There exist two
extreme cases, both of which are unsatisfactory. Either
the bucket gets stuck in a situation where an increase in
force is useless, or the bucket continues its motion
without being loaded. In the first case any more effort to
move the bucket has no effect other than damaging the
system (slipping and eroding the tires in a front-end
loader, for instance). The second case, obyiously, is not
desirable, either. S

In previous work [3] it was suggested that, by
finding the envelope of the maximum and minimum
excavation force during a specific excavation task, one
can avoid the two extreme cases. By “specific” it is
meant that a given bucket (fixed physical dimensions)
has a well defined motion (fixed trajectory) to excavate
from a medium that by a common judgement is fixed
(water content, density, size and other characteristics
have no dramatic variations), and the enyironmental
conditions (temperature and gravity) do not introduce
phase changes (freczing, for instance). In this way, by
measurement of the excavation force as a feedback
parameter, the bucket motion can be readjusted anytime
the experienced force is outside of its expected limits.

In this paper, some results of experimental
measurement of excavation forces are presented. For
this purpose, first, the kinematic and force relationships
for a typical backhoe excavator are derived.



Figure 1

KINEMATIC MODELING

Figure 1 shows the schematic of the system under
study and certain variables and definitions. System
kinematic relationships are necessary for the trans-
formation of the desired cutting path and velocities in
individual joint movements. The Denavit-Hartenberg
coordinates system assignment will be employed. For
reasons of simplicity we will ignore the slewing of the
cab about the vehicle tracks. The other joint motions
take place, more or less, in plane. Thus a planar
analysis is sufficient, and the cutting edge will be
represented by a point. The choice of coordinate
systems is similar to that of the work of Vihi et al
[12], except for the deletion of the first coordinate
system XoYoZo (for the inclusion of slew motion)
which in our case is the same as the shown X\ Y1 Zy.
Thus the transformation between the reference frame
and the first frame is the identity matrix.

Figure 2

Figure 2 shows the various coordinate systers.
The associated transformation matrices are as follows:
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where S and C stand for sin (.) and cos (.),
respectively, and the subscripts 1-3 denote the
assigned number of a joint and its associated
coordinate system. The parameter a’s are the joint
lengths based on the D-H parameter definition; the
twist angles are all zero for the simple planar robot
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arm of the excavator. The joint variables are
represented by q and the other angles, required for
geometric or mathematical relationships, are as shown
in the figures 3 and 4.

For consistency with previous work, some
additional variables are defined such as the
manufacture’s maximum and minimum values of each
joint angle. The lengths 1; to 1 55 are geometric
dimensions. From these, only those pertinent to the
studies and used in this paper are shown. .Based on
these definitions, the corresponding values for the
joint lengths are as follow:

@

The coordinates of the cutting edge of the bucket with
respect to the reference coordinate system are given

a,=l, a,=l, and a,=l;

by

x=alcl+a2Cu+a,Cm )
and

y=a1S1+a2S12 + a8, ©
and the orientation of the bucket,

B=4q +4,%9; 0

where C,= cos (q) , Ci2= cos (@ +d2) and Cy23.= COS
(q +q2+qs), and likewise for S, s12 and Sy,
However, if the angle of the bucket teeth, @ is
required, the constant value of the angle y must be
added to it. This orientation is with respect to the
untilted body of the backhoe. If the machine has an
angle p with the horizontal plane and the angle of the
bucket with a horizontal plane is desired, then the
angle p must be added to the said values. The positive
direction of all the angles are counterclockwise for the
configuration of the excavator shown in the figures.
The Jacobian matrix is used to relate the velocities
and the forces at a given point of interest on a robot
arm with respect to a desired coordinate frame. The
Jacobian matrix for the system under study, defining
the motion of the tool point(the cutting edge of the
bucket),with respect to frame 1 is as follows:

—aysin(g + g, + @) - g sin(g, + §) -G sing
J=J)=| a,008(q + +g)+ @ 008q + §;)+ G005
-1

_aaﬂn(ql*‘h*'q:)"azsin(%"’qz) -a,sin(q,+q,+q,)
ay008(g, + gy + 43) + 8, 008G + G3) ayco8(gy +q; + 9s)
-1 -1

®

INVERSE KINEMATICS

Inverse kinematics implies finding the values for
the joint angles, q; , g2 and q; when the position and
orientation of the cutting edge is known with respect
to the reference frame XoYo Zo,. It follows from
equations (5 ) to (7) that when B is known, then qyz is
known and having x and y leads to:



a,cosq, +a,cos(q, +4;)=x )
and
a, sin g, +a,sin(g, + )=y (10)

These are two equations in two unknowns; their
solution can be easily found, as shown in Appendix B.
Once solved, then the values of q;, ¢z and g; are
readily determined.
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The other necessary calculations are the
relationships between the ram lengths (actuator
variables) and the position and orientation of the
cutting teeth of the bucket, and the ram forces and the
corresponding cutting/loading forces the bucket must
exert to its environment.

The relationship between the length of the first
actuator and its corresponding joint variable q, is

ram 1= JIJ:T"’ IAI"'I:"ZIa[was( g, + 1)+ I sin q|+'l)]

(11
where 1 is the angleBP, P,, which is constant and

l, = -\/l: + 1]

Equation (11 ) can be used, also, to find the magnitude
of q; in terms of the actuator length. The
corresponding equation is in the general form of

mqsin(g, +1)+n,cos(q, +1)=h, (12)

where

I, I,
my = S Ny =
afE+l’ 7 2+l

This equation has generally two answers, but only one
of them is acceptable for the system under study.
These answers are

q, = tan™ (hy,ty/m? +n —hl)—tan™ (ng,m,)-7

_ (13)
In equation (13 ), tan stands for atan2 function.
In a similar manner, the length of the actuator 2 in
terms of angle q, is

and hy =13 +12 +1} +1} - (rand)’

ram2 =J(ll ’11)2 +I: "'I; '2’/[(11 =ly)eos(y = q;) +ysin(y "Iz)]

where v is the constant angle FP; P;and l;is the
distance between points P, and F, and in terms of the
dimensions shown in figure 3 is

l, = NIy

The magnitude of angle qz in terms of the ram
length is found from

gi=r-tan ' (dxfl] + (- 1) -d?)-tan e -n)]

(16)

(15)

where
@, -1,) +1;+1; - (ram 2)?
B 21,

d

The relationships for the third joint are more
complicated, because of the four-bar linkage.
Changing the length of ram 3 leads to changes in the
angles of the linkage, which govern the bucket
motion. The four-bar linkage is shown in figure 4.
The lengths of the sides are represented by ¢, p, T and
s. In a classical linkage the input angle is A and the
output angle is o.. In our case, however, we are
interested in the relationship between the actuator
length and its joint angie ¢s. The length of ram 3 can
be defined as

ramd= 3~ 2, (1, =1, )sin A, - (lyy =Ly Jeos ]+ (lha=ta) + (=t

amn
where all the elements are as shown in figure 4. Here,
instead of A another angle A3 (see figure 4) is
employed. When necessary, the following
relationships can be used.

A, = tan "%ﬂ_ and A, =4~24 (18)

and 4, = = Ay — A 19
so that sin 4, =cos(4, —4) and cos A, =sin(A - 4,)
(20)

The following relationship holds between A3 and o :

(In —rsin A, )1+(Iz, +resiy )z +2ssin a(ln —rsin },,)
~2scosall, +resd)=c* -5’
(2))
From this equation we can derive o in terms of A3
or vice versa. In order to find o the resulting equation
is in the form of

m, sina.+n, cosa=h, 22)

where m, =-(l,, +rcos ) n, =(I22 - rsinlg)

and
h, =-21S-(c‘2 -st-r —Pz)‘_"g(lzl 008 Ay — Iy, sin 4y )

The solution to this equation is given in appendix A.
The same solution applies for the case of determining
A3 in terms of o, whose equation is

mysin Ay + n, cos Ay =hy. 23)
where



my =y, +sc0s @) n, = (I, —ssina)

and

1 .
hy =-27(c’ -st=rt —p’)—l:-(l,, cos @ — I, sina)

v Figure 4
Also, as can be seen from figure 4 angle 8 is
constant for a given bucket, and the variation of a. and
the joint variable q; are equal and in the same
direction. That is to say, o and gs have the same rate
of change and their magnitude is different bya
constant. That is

a=06+A4+q; @4)
This is more evident when the value of qs is zero, so
that the point Py is in line with P,P,. It also follows
from equation (17) that the value of angle A3 in terms
of the ram length is determined from

(Iu 'lu)ﬁi"'l) _(Iu "’u)cm'l) ='2'11'—[l:-+(lu ‘ln)l +(l;| _,”)z —ram3’]

(25)
This equation is again in the form of equations 22)
and (23), and has a pair of solutions. From the above
equations, the length of the actuator, ram3, can be
found in terms of q; and vice-versa.

FORCE/TORQUE RELATIONSHIPS

For our studies, the Jacobian matrix is most
suitable for the force/torque relationships between the
reference coordinates system and the joint efforts, that
is, the force torque in the joints. This relationship is

r=J'F (26)
where F is vector of the forces requirement in the
Cartesian coordinates, consisting of the force in the
Xo—direction, Yo-direction and the moment about Zo
axis, and 7 is the associated joint efforts (force or
torque). It is necessary, furthermore, to find the
relationships between the joint torques and the forces
in the actuators, the three hydraulic cylinders. If the
three forces in the actuators are denoted by fj, f; and
f, then we have the following relationships:

- 1[I sin(q, + ) -1, cos(q +m)]
. 1
'JIAI + 152 * I: - 215[14 sm(ql + ”)+ ,5 COS(ql + 71)] . (27)

L[l costy= g )= (hmle)sintr=g)]
11=J 2 g2 . . '. fr
(=LY + 8+ 2 =21, [ - hycos(y = @) + b sin(y — q2)]
(28)

506

= ’n!’u sin 4, - (ln -l )]*‘ In[lu cos 4, + (III = z-)] 1
T2l b i (1 be)oos o (g = s =B ) + (b= e

29
From the above equations, one can determine the
joint torques in terms of the ram forces, Then from
equation (26) the forces at the cutting edge of the
bucket (tool point) are determined. The inverse of this
process determines the required ram forces to provide
the resistive forces on the bucket.

EXPERIMENTAL RESULTS

The following experiments were carried out at
Lancaster University using LUCIE the Lancaster
University Computerized Intelligent Excavator. The
experimental work consists of the measurement of the
ram forces during a number of excavation tasks on the
same soil. In this respect, all the parameters related to
the machine and the medium remain constant. Also,
the environment factors such as the temperature and
the slope of the terrain are almost the same. Asa
result, the measured values reflect a true represent-
ation of the variation of the excavation forces. As
expected, this force has a stochastic nature and varies
considerably during the process of excavation.

From the ram forces, the excavation force at the
edge of the bucket can be calculated by using
equations (27)-(29), first, finding the corresponding
joint forces; then, using equation (26), relating the
joint forces to the three components of the excavation
force. In our experiments, only the ram forces for the
boom and the dipper are available, because only two
pressure sensors were installed at the time of the
experiments. On the other hand, since the excavation
force at the tip of the bucket consists of only
horizontal and vertical force components (x and y
directions) and no torque about z-axis, with good
approximation we can determine T3 in terms of T, and
1,. In reality, however, the third component is not
zero, because the excavation forces stem from a
number of components, including the friction to the
body of the bucket. These components, nevertheless,
constitute only a small portion of the total excavation
force, the main part of which is due to the resistance
of the medium to cutting.

The results shown correspond to five excavation
runs. In automatic mode, the excavator can be
commanded to keep the bucket velocity constant
during excavation. The orientation of the bucket is
also kept constant with respect to the ground. In this
respect, the trajectory of the bucket motion is more or
less the same. In the following figures, only actual
motion through the ground is presented.

Figure § illustrates a typical example of the forces
measured by the pressure sensors in the rams. The
relative variation of the measured forces for all the
five runs can be seen in figures 6 (boom ram) and 7
(dipper ram) A typical case of the calculated
horizontal and vertical components of the excavation
force is depicted in figure 8. Finally figures 9 and 10,
respectively illustrate the minimum and maximum
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force components experienced during the five
experiments.

In the figures shown, the horizontal axis shows
the sampling number of the measurement taken, and is
proportional to time. The values on the vertical axis in
figures 5, 6 and 7 denote the voltage of the signal from
the pressure transducer. A reading of .5 volt
represents zero pressure and 4.5 volt corresponds to a
pressure of 350 bars. The force values in figures 8to
10 are in Newton.
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Figure 7- Pressure variation in the dipper ram- all runs

DISCUSSION

The desired outcome of the study is that, for
every point on a given trajectory of the cutting edge of
the bucket there should be a maximum and minimum
value of excavation force, for a given bucket and a
specific medium. The results obtained fulfil this
requirement to a certain degree, only. The problem
lies in the fact that the speed of operation also has an
effect on the results. As it can be seen from the
figures 9 and 10, the starting points coincide whereas
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the finishing times are not necessarily the same
However, as the number of trials is increased, this
difference becomes less and less significant.
Consequently, it can be said that the assumption of
maximum and minimum values of the excavation
force, is correct.
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Figure 9 — Maximum and minimum of excavation
force horizontal component
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Figure 10 - Maximum and minimum of excavation
force vertical component

SUMMARY

This paper presents some analytical results for the
kinematics and force relationships in a typical
backhoe. These relationships are required for the feed-
back purposes at both higher and lower level control
of the motion of bucket for automating the excavation
process of such a machine. Also, experimental results
of the measurement of the excavation force are
presented that confirm an assumption of previous
work regarding the variation of such a force during an
excavation task.
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APPENDIX A

The general solutions to a trigonometric equagon of the
form :

e

msinx +ncosx=h
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is obtained by, first, writing the equation in the
equivalent form

msinx sneosx h
mt+n?  Amt+n®  m?+n’
Setting
m n :
———=C0S ¥ and =Sy
Jm? +n’ m? +n
leads to
inCe+ )' h g soatE ) +Jm? +n* -h*
sm(x+))= an X =
sz+n’ m? +n®

and the value of the unknown X is, then

h
)-y
+ym?+n®-h?

x=tan™'(

APPENDIX B

In the set of equations (9) and (10) x and y are
known and q, and q; are the two unknowns. can be
solved as follows. By rearranging the equations we
have
x—a,cosq, =a,cos(q, +q,)
y—a,sing, =a,sin(q, +4,)

Squaring each side and adding together leads to
x* +y* ~2a,[ysing, + xeosg ]+a =a;
or
x*+y*+a} -a;
2aq,
This equation is in the same form as solved in

Appendix A. When solved then the magnitude of q;
can, further, be readily found.

ysing, + xcosq, =
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