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Abstract: This paper deals with the design and identification of the dynamic model of a
compactor, an articulated frame steering mobile engine for use in road construction. A
classical approach based on an Ordinary Least Squares identification method is used. A
survey of these techniques is given and applied to estimate dynamic parameters of the
compactor, and especially the contribution of the contact strengths between rolls and soil.
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1. INTRODUCTION

The compactor (see Fig. 1) is one of the most

important equipment in the set of mobile engines

which take part in the area of road construction. A

typical use of compactor is in embankment, base and
carriageway compaction. It can be seen that the

vehicle must follow an efficient trajectory defined in

position, velocity and acceleration according to engine

degrees of freedom to guarantee the homogeneity and

the expected density of considered compacted

material. Those features should be improved taking

into account a dynamic model compared with a simple

path tracking using kinematic model.

There exists many kind of steering systems for earth-
moving equipment. According to Dudzinski [2],
systematic classification, the compactor (Fig. 1) has an
articulated frame steering. Even if such structures are
used for a long time (1913), their modelling will be
essentially restricted to kinematic one which is based
on velocity constraints as pure rolling and non slipping
conditions [7].
As the rear and front axles of the compactor are

constituted of rigid rolls, the conditions of contact are

not similar to a classical wheel interaction with soil.

Consequently, a dynamic model that explicitly takes

into account bonding strengths is sum up in this paper

(See [3] for details). An estimation of the parameters

of this model based on an Ordinary Least Squares

identification method [6] is given.

2. DESCRIPTION OF THE COMPACTOR

According to classical robot manipulator description

[1], the compactor is considered as a mechanical

c,- c,
I

Figure 2. Tree structure of the compactor.

system E composed of a tree structure of Nrigid bodies

C1 where Co is the base body, so that:

N_ oCI N = 4 (1)

Figure 1. A typical compactor : Albaret VA 12 DV.

with the following body definitions (see Fig. 2):
• Co, C,: the front and rear chassis,
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• C1, C4: the front and rear rolls.
• C3: a virtual body (used to define a second frame

R3 attached to C2).
The system E is provided with a frame R1 respectively
attached to each of the (N+1) bodies Ci. Let Ri be
defined as:

Ri = (0i, x., y , z.) (2)

2.1 Compactor position

Hypothesis 1. The compactor moves on the plane II
which is perpendicular to the gravity.

Let Rg be a Galilean reference frame attached to the
plane 11 so that:

Rg = (Og, xg'), g,zg) (3)

The robot posture can be described by the position and
the orientation of the body Co with respect to the base
frame Rg. It is given by the following three variables:

• x0, yo: the coordinates of the reference point 00 in
the frame Rg,

• 00: the orientation of the frame R0 with respect to
the frame Rg.

2.2 Parametrization of the compactor structure

Classical tree structure description using the modified
Denavit-Hartenberg notations [5] applied to the
system E defines the geometric parameters of the
compactor (see Table 1) with respect to the position
and orientation of the body CO.

i s in a a d

I 0 1 0 _n/2 0

2 0 1 0 0 -D2

3 2 0 2 0 -D3

4 0 1 3 _n/2 0

where aA is the (3 x 3) rotation matrix which defines
the orientation of the flame R, with respect to the
frame Rai and a'Pi is the origin of the frame R1
expressed in the frame Rai.

Remark 1. ui = I means that the i-joint is actuated
and pi = 0 that it is not. ai specifies the type of the
joint (6i = 0 if rotational, (y, = 1 if translational,
a; = 2 if fixed).

2.3 Generalized coordinates

According to the previous description of the
compactor, the vehicle motion is completely described
by the following vector of (n = 6) generalized
coordinates:

T
q(t) = 1-0 yo 00 01 02 04]

This description can be easily applied to other
articulated frame steering engine like: double-jointed
loader, loader with articulated pendulum joint and so
on. On the other hand expressions of kinetic and
potential energies using this description are well
known for a while now.

3. DYNAMIC MODELLING

Let E be the mechanical system where position is
given by the vector of parameters q and LE its
Lagrangian. Let T (of same dimension as q) be the
vector of the generalized forces applied to the system
E. Then the vector q satisfies the following system of
Lagrange equations:

dt(aq(L,)) aq(L,) = 2 (6)

When the Lagrange equations are calculated for the
system E, they yield a dynamic equation which can be

written in the form:

(5)

Table 1. Geometric parameters of the compactor

In that case the homogeneous transform (4) of the
frame Ri relative to Rai (where ai is the antecedent of
i) is expressed as a function of the 4 following
parameters:
• ai: angle between za and zi , corresponding to a

rotation about x
• di: distance from za to z. along xa
• 0i: angle between xa and xi, corresponding to a

rotation about zi ,
• ri: distance from x to xi along z..

aiz

=i

a a,
A
=i f,

01x3 I

with a,A' = l a, a ill arkJ (4)

M(q) • q + H(q, q) = T (7)

where
• M(q) is the (n x n) mass matrix of the system E
• H(q, q) is a (n x 1) vector of centrifugal and

Coriolis terms.
The statement of forces acting on the system E is
divided in two parts:

T = U+ Q (8)

where U depends on the motor torques on joints 1, 2
and 4 as shown in table I and Q on the bonding
strengths between the plan II and the rolls C1 and C4.
The development of the vector r gives
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u4,
T

[o00u1 u2

where ul is the motor torque on i-joint and

a 0

(9)

Q = IKi' n ' , c, i = 1, 4 (10)

o
where 3n ;- c points out the wrench of the resultant
bonding strengths at point O. Its expression projected
in frame Rai gives:

St

a, o;
.3 n-->c; _

where

(12)

On the other hand the (n x 6) matrix K has the
following definition -'

KT =
=i

i = 1, 4 (13)

[4(a c,, )]n

where a'VC 'h q is the velocity of the point O,i of the_
body Ci relative to the plane 11 expressed in the frame
Rai and where wen is the rotation velocity of the
body C1 relative to'the plane H.
As a result, the new expression of the dynamic model
of the compactor is given by:

01
M(q)q+H(q, q) = U+I; • 03n_>c,+ K4' 3 3n<-,c,(14)

where M(q) , H(q, q) , U and K are known matrices.

On the othg hand, the wrench of the resultant

strengths 0, Sri c has to be determined.

3.1 The roll-soil interaction model

The simplified roll-soil interaction model onjhe figure
(3) is used to determine the expression of 3n a c that
points out the wrench of the resultant bonding
strengths at point Oi.
In these conditions the roll Ci is in permanent contact
with the soil along a surface Si which represents an

= f F (ndl,
= f D'F (Odl

with ' (11)

S` = j Fn'(1)dl

l7 = f4(1 FD(^)dl

Lz„ Ar,

Figure 3: Simplified roll-soil interaction model.
angular part go of its circumference.
Let Pi be a point of the surface Si.

Remark 2 . (^, tl) are used to specify the relative co-
ordinates of a point of the contact surface Si (see Fig.
3):

= Rc.((P0 - rp) 4 E Cogs = R'go l

rl = I n E [-LC/2,Lc,/2]
(15)

Hypothesis 2. The depression eZ in the ground is
small compared to the radius R, of the rolls: eZ <(R,.

According to the hypothesis (2), it is possible to
simplify the expression of the longitudinal shear
displacement L and An the transversal shear
displacement to obtain (see Rem. 2):

A^ g,^

on=gr
(16)

where the longitudinal slip g, and the transversal slip
gy are defined as following:

V,-16-R,w
gx = Rcw

Y
gy _ R'^(L)

(17)

^x 0 R,,sincp

With
Vc;, n Vy we n OiPi = i

0 0 -R^eoscp

When a torque is applied to a roll, shearing action

is initiated on the vehicle running gear-terrain
interface. To predict vehicle thrust and associated slip,
the shear stress-shear displacement relationship of the

terrain is required.

Based on a considerable amount of field data, it is
found that there are three types of shear stress-shear
displacement relationship commonly observed [8]. In
the case of the compactor this relationship exhibits
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C

Sh^ di spl ace:n m t j

Figure 4: The shear stress-shear displacement
relationship

characteristics shown in (Fig. 4). It may be described
by an exponential function of the following form:

JlK
T = t,, (1-e )

(c+otano )(1-ejIK)

where
• r is the shear stress,

• j is the shear displacement,
• c and Q are the cohesion and the angle of internal

shearing resistance of the terrain,
• K is the shear deformation modulus,
• a is the normal pressure.

3.2 Characterization of the shear stress-slip

relationship

Hypothesis 3. The pressure distribution FZ along the
contact patch S is uniform and equal to

F: = 6V/(L,^s) (19)

Hypothesis 4. The shear stress-shear displacement
relationship (18) used for small shear displacement
can be simplified as following

T = Tmax'J/K jSK (20)

According to the expression of the longitudinal and

transversal shear displacements (16), the shear stress

at point Di is written

T = Tmax• Ae +ArI2/K JA2+Ar12<-K (21)

Let p be the slip angle at point Di. Then the

longitudinal and transversal components of the shear

stress are

2 2 -1/2
TS = Tcos(3 = tgx (g,-+gy)

2 2 --1/2
T,t = Tsin (3 = Tgy(gx+gy)

3.3 Longitudinal and transversal elforr^

The longitudinal and transversal efforts are

determined using the spatial integration of the shear

stress along the contact patch between the roll and the

terrain. In these conditions the longitudinal effort F, at

point Di is written as

D ,
(l) = 5 TEA

v

fo.^ T m axgx K
0

(23)

Assuming that the hypothesis (3) is verified it gives

F, (1)- Tmaxgx2K
(24)

In the same way, the transversal effort FY is

calculated(18)

2
n;s

Fy (I)= Tmaxgy2K

3.4 The case of the straight line

(25)

Relations (14, 11, 13, 24, 25) gives the general
expression of the dynamic model according to the
selected roll-soil interaction model. To verify the
hypotheses given below, the identification process had
been performed along the most simple trajectory: a

straight line.
In these conditions, the dynamic model has the
following simplified expression:

M.Yp = Kx lgx1 + Kx4gx4

ZZ101 + Fi 101 + Fs1 sgn01 = ul - R,.Kxlgx1

ZZ464+F,404+Fs4sgn64 = 114 R,Kx49x4

(26)

where
• M is the total mass of the compactor,
• ZZi(i = 1, 4 ) is the inertia of the roll Ci,

• Kri(i = 1, 4) is the coefficient of bonding

strengths for the i-joint,

• F"i(i = 1, 4 ) is the viscous friction parameter for

the i-joint,
• Fsi(i = 1, 4) is the striction friction parameter for

the i-joint.

4. IDENTIFICATION MODEL

4.1 Standard dynamic parameters

(22)

The relation (26) is linear in relation to a set of

(np = 9) parameters, Xs.
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Ys = Ds(q,q,gx1•g.r4)'Xs (27)

with

Ys =

0

uI

u4

xo 0 0 0 -gx1 0 0 0 -gx4

Ds = 0 61 01 sgn 01 R1gx 1 0 0 0 0

0 0 0 0 0 64 64 sgn04 Regx4

X s = [ ZZI
F, I F5I ".I ZZ4 F14 / s4 K14]

I

Ds is the ( ne x np ) regressor of the linear dynamic
identification model, which can be used to identify the
standard dynamic parameters , X1 (ne = 2, the
number of equations in DS ).

4.2 Sensors influence on modelling

Each roll of the compactor is equipped with an
hydraulic actuator. Two sensors are used to measure
the pressure in each chamber of the actuator to
determine the motor torque. They introduce
systematic error on load pressure due to the presence
of offset on each measurement. Consequently, the
dynamic model (27) is modified to take into account
these observations as follows:

n1nt = u I +u10 (28)

where:

u11r,, u;, u 10 respectively are measured, literal and offset

values of motor torque on the i-joint.

So the new dynamic model deduced from (27) and
(28) gives:

= DY (29)(q q )'Xss , ,gz1,gx4 s

with

01

Ys = III

U4

1;00 0 0 -g51 00 0 0 -gx4 0

Ds = o 0 e, sgn01 Regal 1 0 0 0 0 0

0 0 0 0 0 0 04 04 sgn04 Rcgx4 I

Xs = [M ZZI F11 FsI Kx1 1f 10 ZZ4 F14 Fs4 Kx4 1140]

4.3 Identification method

Parameters are estimated as the Ordinary Least
Squares (OLS) solution of an overdetermined linear
system of r equations in tip unknowns, obtained from

the sampling of the dynamic model along a known

trajectory ( q, q, gx1, gx4)

Y= Ws Xs+p (30)

with:

Y=

Ns =

Y 1)

},(ni)

sD(1)1
Ds

Y(j) _

Y") _

D')(1)

DS.)(ns)

where:
• W. is the (r x np) observation matrix,
• ns is the number of samples,
• r is the number of equations (r = ne • ns > np)
The Least Squares (LS) solution X, minimizes the 2-
norm of the error vector p in (30):

Xs = minxl`Ws•Xs-Y 2 (31)

5. PRACTICAL IMPLEMENTATION

5.1 Dynamic identification

Measurements of six signals are used to carry out the
identification of the dynamic parameters of the
compactor:
• 01 , a precision encoder (4 x 2048(pt/rev)) on C1

• 04 , a precision encoder (4 x 2048(pi/rev)) on C4

• u1, u4 , two pressure sensors (0, 10 Y)(0, 400bars)

On the other hand, a free bicycle wheel equipped with

a precision encoder (4 x 4096(pt/rev)) is fixed on

each side of the front roll. The resultant data are two

rotation angles 0, and 0r . Knowing the wheel radii R1

and Rr and the distances from the wheels to the roll

centre Dt and Dr, the translation and rotation speed of

the front roll are given by the equations of the

unicycle:

L_ [Dr' Rt Dt ' Rr

+Dr -RI Rr

The relation (32) supposes that each of the two bicycle

wheels satisfies the non slipping condition.
Low-pass filtering associated with a central

differentiation algorithm provides a digital pass-band

filter to estimate derivatives at low frequencies and to

decrease high frequency noise which comes from

numerical differentiation.

After calculating Y and WS to get (30), Y and all
column of WS are low-filtered in a process called

65

Dt



parallel filtering to eliminate high-frequertcy noise.
Estimated value of dynamic parameters X5 are given
in table 2 with their relative standard deviations:

6X

Or = -^-

Xy,
i = 1, ..., nP (33)

Parameters Units XS 0'(%)

M kg - -

ZZ1 kg.m2 556.32 0.29

F,1 Nm.s-1 64.75 3.89

FS I Nm 174.74 2.65

KK1 N -259.82 26.64

1110 Nm -183.14 0.95

ZZ4 kg.m2 671.33 0.3

F,4 Nm. s't 82.84 3.1

Fs4 Nm 142.73 3.33

K,4 N -309.59 17.24

u40 Nm -181.94 0.95

Table 2. Identified dynamic parameters

with:

cond( WS) = 81,58

cond(o) = 94,52 1 = WS . diag(XS)
(34)

The trajectories used to identify dynamic parameters
of the compactor are not enough exciting . That is why
all the parameters are not well estimated (especially
the total mass M of the compactor). On the other hand,
according to data from Albaret, the estimated value of
roll inertia are satisfying.
More exciting trajectories are now used to perform a
better identification. Results are expected soon.

6. CONCLUSION

In this paper , the dynamic model of a compactor which
explicitly includes bonding strengths with soil was
presented . In order to describe the configuration of an
articulated frame steering mobile engine, a
parametrization using classical robot description was
proposed . The results clearly show that the slip is
essential and must be taken into account particularly
during cornering.
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