
The 5th International Symposium on Robotics in Construction June 6-8,1988 Tokyo, Japan

DEFINITION OF A PROGRAMMING LANGUAGE FOR TELEROBOTS

APPLICATION TO ROBOTICS IN BUILDING CONSTRUCTION

B. TONDU, R. FOURNIER, G. CLEMENT

Comissariat a 1'Energie Atomique, CEN/FAR

Unite de Genie Robotique Avance

92265 Fontenay-aux-Roses, France

Abstract

This paper deals with the programming of construction robots for
finishing work on fagades of buildings. The difficulty of automating
such tasks, and the high potential occurence of incidents on the building
site, lead to consider the use of hybrid telerobots, programmable like
autonomous robots but also controlable in teleoperation mode . Programming
telerobots is a new field which must allow the combination of the two
modes of control: the automatic mode and the teleoperated mode. We
propose in this paper the definition of a telerobot programming language,
and a first simulation is presented to illustrate its application in
construction robotics.

1.Introduction

Within the EUREKA/GEO project, a facade working robot /1/, we have to
consider the problem of programming the machine: GEO is intended to
perform finishing works on fagades in an outdoors environment. Tasks and
environment may present high degrees of unstructurations due, for example,
to unexpected obstacles, misfunctionment of the process or particular
local tasks. This lack of structuration makes it very difficult to
consider a purely autonomous mode of operation of the robot. To overcome
the local difficulties or incidents encountered during a session we
propose to get help from an operator through a teleoperated mode of
control. Then the initial programming will not have to be reconsidered,
the machine will come back to its nominal procedure once the local
problem is solved.

Subject of this paper is to present a first definition of a so called
"telerobot programming language" that is able to integrate combinations
of automatic and computer aided teleoperation (CAT) modes /2/,/3/. State
of the art is not presenting general telerobot programming language
adapted to our problem. The teleoperation mode of control is not fully
integrated as part of the instructions set of the language; it is only
considered as back up solution to complete a given task when the autono-
mous operation is no more achievable. LARTS /4/,/5/ is moving further
and does integrate CAT modes but only to ease the learning and programming
procedures. The objective of the concept we develop here is to directly
integrate within the program sequence CAT modes that will be considered
at the same level as autonomous instructions. The two approaches are
then unified, allowing to switch continuously between autonomous and
teleoperated modes of control.

-737-

MN MAO

2.Basic principles of the language

We call "robot mode" the autonomous mode of control of the telerobot,
and "CAT mode" the advanced computer aided teleoperated mode of control
of the telerobot.

Basic principles of the language are twofold:
1. A task is a sequence of "automatic subtasks" performed in robot mode

and/or "CAT subtasks" performed in CAT mode.
2. For each subtask (automatic or CAT) a set of takeovers procedures

can be associated. These procedures are performed in CAT mode. The aim
of takeovers is to offer to the operator the possibility to complete an
interrupted subtask. The interruptions may come from the occurence of an
incident (detected by sensors) or may be forced by the operator himself.
When the problem is overcome then a return procedure allows to come back
to the current subtask.

Figure 1 illustrates those principles. It shall be noted that
application range of takeovers is limited to the current subtask; the
operator cannot jump to any other subtask in sequence. This very streng
limitation has been chosen in order to simplify the control process of the
program and to increase the safety of the system.

sequence of

automatic and/or

CAT subtasks

interruption of
the subtask

return to the

subtask

Figure 1: Association of a takeover to a subtask

We will further distinguish the programmer who performs the task
programming, generally off-site, from the operator who supervises the
task execution on-site. Depending on the problem, programmer and
operator are the same persons or not.

Programming a task corresponds to the following steps:
1. Definition of the complete set of subtasks and of takeovers that

are required for the given task.
2. Attachment of appropriate takeovers to each subtask and definition

of the sequencing.

On-site the execution phasis is performed under operator's supervision.
When required the operator is sollicited by the machine to adjust a
parameter, to complete a CAT subtask or a particular takeover.

-- 738-

Ml URNO

J

3.Definition of subtasks and takeovers

The definition of subtasks and takeovers is based on a double library
of elementary instructions:
- robot mode instructions: elementary automatic instructions similar to

those of an end-effector level robot programming language such as VAL /6/.
- CAT mode instructions: elementary CAT constraints of an advanced
teleoperation system /2/ (freezing degrees of freedom, distance servoed
to a plane etc).

3.1.Definition of automatic subtasks

An automatic subtask is defined as a sequence of robot mode instruc-
tions. A set of messages will explain to the operator the content of the
subtask. The following syntax is proposed for the definition of an
automatic subtask:

'define automatic subtask(name)

(set of messages indicating
what realizes the subtask,
and the adjustable parameters)

(sequence of automatic
instructions)

end define

3.2.Definition of CAT subtasks

A CAT subtask represents an action which must be performed by the
operator. Its programming consists in indicating to the operator:
- the aim of the subtask,
- the CAT assistance that is proposed to achieve the subtask.

This CAT assistance is composed of a set of CAT mode instructions

that combine their effects. For example, the aided painting of a surface

can consist in the combination of following constraints: tool orientation

frozen perpendicularly to the surface and distance of the tool to the

surface servoed at a preseted distance. The following syntax is

proposed to define such a CAT subtask:

define CAT subtask(name)

(set of messages indicating]
the aim of the subtask)

(set of CAT instructions I

combining their effects)

end define

3.3.Definition of takeovers

A takeover is defined as a CAT assistance composed by a set of CAT
mode instructions combining their effects. The definition of a takeover
is then similar to the CAT subtask definition, the difference being that
there is no predifened aim as in the case of a CAT subtask. A set of
messages is also here explaining to the operator what the programmed
takeover consists in. The following syntax is proposed for the definition

--739-

It

of a takeover:

(define takeover(name)

((set of messages indicating
in what consists the takeover)

(set of CAT mode instructions

combining their effects)

lend define

4.Association of takeovers to a subtask

4.1.Basic rules

The association of a takeover to a given subtask can be simply
represented by a programming line such as:

(execute subtask(name))(takeover(name)

However, to be really efficient, we complete this programming
principle with the two following rules:
- At each subtask can be associated several possible takeovers, which

will be proposed to the operator. Depending on the reason why the
subtask has been interrupted, the operator will choose the most adapted
proposed takeover. This possibility of choice can be expressed by an
'or' in the previous programming line.
- If the proposed takeovers are not sufficiently pertinent, the operator

will have the possibility to define on-line a more adapted takeover. This
on-line definition will be possible thanks to a menu that will propose
a set of CAT mode instructions. However, for safety reasons and
depending on the programmed subtask, it can be important to foresee
during the programming phase the limitations of this on-line definition
process by imposing or forbidding given CAT assistances. This will be
expressed by adding to the programming line an instrcution called
"limit-takeover". The "limit-takeover" instruction is detailled in the
next subparagraph.

After having introduced these two rules, the proposed programming
line becomes:

(execute subtask(name))(takeover(namel) or takeover(name 2)
or takeover(name3) ...)(limit-takeover(name))

One can remark that the "limit-takeover" instruction can be directly
associated to a subtask without takeovers have been specified:

(execute subtask(name))(limit-takeover(name))

This association means that the programmer has no idea about the
pertinent takeovers in case of an incident, but he however prepares the
definition of them.

4.2.Definition of on-line takeovers

The definition of on-line takeovers will take place when the operator
on the site will have refused all the programmed takeovers. Thanks to a
menu, the operator selects CAT mode instructions and their combination

7n')

MHORIMP

will form a new programmed takeover. This on-line definition will be
limited by choosable compulsory or forbidden CAT mode instructions.

We so complete the definition of the takeover presented in paragraph
3 by introducing the "limit-takeover" instruction. The proposed syntax
for this instruction is:

.define limit-takeover(name)

(set of compulsory CAT
mode instructions)

(set of prohibited CAT
:mode instructions)

end define

5.Execution principles

5.1.General organization

Three cases may occur during the execution of a subtask:
l.The subtask is entirely achieved in its nominal mode (automatic

or CAT),
2.The subtask is interrupted and the call for a takeover allows to

overcome the difficulty and the subtask can be achieved,
3.The subtask is interrupted but cannot be completely achieved: it

must be abandoned and special response has to be envisaged in the case
(off-site reprogramming, direct "hands-on" work, give up,...).

The call for takeovers is processed in the following way: when the
interruption of the subtask happens, the systems loads the set of
programmed takeovers that are contained in the "takeover" instructions,
and the set of foreseeable CAT modes that are contained in the
"limit-takeover" instruction. When a takeover has been loaded, the
operator has the possibility to change for an other programmed takeover
or to create on-line a new takeover thanks the specific menu. When the
takeover procedure is ended, return to the subtask is controlled by a
specific procedure that has to propose a choice of return criteria.
Figure 2 presents the general organization of the subtask execution.

- 741 -

MIN VjIR;-__JIHQ

execution call adjustment on-line adjustment
of the of parameters
subtask

interruption
of the subtask

end of the subtask H-_

control of the
return to the
subtask

loading of the programmed
takeovers and/or
on-line definition of
takeovers

change of takeover of
takeover the subtask

-y-° < the subtask is ended ? no

yes- -_ the subtask is given up ? no_

Figure 2: General organization of the subtask execution

5.2.Man-machine dialogue

The operator follows the task execution thanks to a control screen.
He recieves the sucessive messages prepared during the programming
that indicate to him the current state of the subtasks execution and
guide him in his interventions. The operator can intervene at following
levels:
- for adjusting a parameter of the current subtask, without interrupting

the subtask (for example, concerning the spraying process)
- for realizing a programmed CAT subtask,
- for choosing or creating a takeover and continuing the interrupted

subtask in CAT mode.

The set of these operations will be realized through an interactive
dialogue.

6.Simulation example

A simulation program is being developped to' evaluate the proposed
concepts. We present in this paragraph a first example of simulation
intented to illustrate the basic idea of associated takeover to an
automatic subtask.

In this exampleA we consider the subtask consisting in painting a
rectangular surface in robot mode. For performing this subtask, a
straight-line trajectory is programmed at constant speed. The execution
program is simulated thanks to a cartesian trajectory generator written
on the model of the VAL language (the two basic instructions "MOVES" and
"SPEED" have been simulated).

Besides, we introduce a specific model of the painting spraying cone
illustrated on Figure 3.a, inspired from studies about robot painters /7/.

742-

oth

J

This model considers that the trace of the spraying cone on the
surface is the following: within an inner circle of radius "r", the
coating thickness is uniform and within a margin between the radius "r"
and the radius "r'" it decreases outwards irregularly. This model being
considered, the painting strategy consists in sweeping the surface with
a step of "r+r'" that insures the overlaping of non uniform circle
regions, as illustrated on Figure 3.b.

Furthemore, we assume that an obstacle, for example a pipe extremity,
obstructs the programmed trajectory. We consider that a sensor system
allows for the detection of the obstacle. When the obstacle has been
detected, the robot arm stops, the spraying process is interrupted and
the takeover procedures are loaded. The operator can so overcome the
obstacle. At the end of this phase, he considers that the subtask can
be pursued in the robot mode. A return criterium is then selected to
perform the repositionning of the tool-effector on the nominal
trajectory. The painting process starts again. Figure 4.a shows the
simulated interruption of the automatic trajectory and its pursuit
after the takeover. The points Q, Q', Q" respectively represent the
interruption point of the programmed trajectory, the final point after
moving the arm in takeover and the repositionning point on the
trajectory.

However, during the takeover, the painting process was interrupted
in the neighbourhood of the obstacle, as it is illustrated on
Figure 4.b. It can be necessary to achieve this part after the subtask
has been ended. It is then important to remark that this finishing
phase can be more or less difficult:
- In the case where the process is not dirty or the obstacle is

protected, this finishing phase can be easily made by defining an
aided painting takeover that, for example, combines a freezing of the
tool orientation and a distance to the surface servoing.
- In the case where the process is dirty and the obstacle is not

protected, the finishing phase becomes more difficult, and can
necessitate direct human intervention.

Lastly, Figure 5 presents the corresponding simulated robot program.

7.Conclusion

We have presented in this paper the definition of a programming
language for telerobots. Our approach considers at the same level a
double set of instructions corresponding to a robot mode and a CAT mode.
It seems particularly adapted to the robotization of delicate or
hazardous tasks as encountered in construction robotics. Further
developments will lead to elaborate an experimental site in order to
practically validate the proposed concepts.

743 --

Rt^,uDENO

J

References

/1/ B. Tondu, G. Clement, C. Rouveau, R. Colas, D. Ahsworth

"Presentation of EUREKA/GEO Project: A Facade Working Robot",

Proc. 4th International Symposium on Robotics and I.A. in Building

Construction, Haifa, Israel, June 1987, pp. 94-102.

/2/ J. Vertut, P. Coiffet
"Computer Aided Teleoperation", Volume 3b in "Robot Technology",

HERMES, Paris, 1985.

/3/ Jean Vertut Memorial Session, RoManSy '86, Cracow, Poland,

September 1986, pp. 3-41.

/4/ T. Sato, S. Hirai
"Language-Aided Robotic Teleoperation System (LARTS) for Advanced
Teleoperation", Proc. '85 ICAR, Tokyo, Japan, June 1985, pp. 329-336.

/5/ S. Hirai, T. Sato
"Advanced Master-Slave Manipulator Augmented with World Model",
Proc. ISIR 15, Tokyo, Japan, September 1985, pp. 137-144.

./6/ VAL Manual , Unimation Inc., 1980.

/7/ A. Klein
"Off-line Programming for Robot Painters", in Artificial Intelligence
and Information-Control Systems for Robots, Elsevier Science, 1984,
pp. 211-214.

744 -

I

distance
of the tool
to the
surface

coat thickness

r

(a) (b)

Figure 3: Modelisation of the process, (a) Model of the spray, (b) Method
of surface coating

pl P2
programmed
painting trajectory

'takeover in CAT mode 1
P3

P6

p8

P7
i/

Pg P10

Figure 4.a: Example of automatic subtask and its takeover in CAT mode

?a5- i1

MIN

3

: non painted region

Figure 4.b: Trajectory part showing the spray trace and the region to
be finished in the neighbourhood of the obstacle

trajectory-
interrupted
during the

SPEED V

MOVES P2

MOVES P3

MOVES P4

motion in P2 (MOVES P5

(MOVES P6

(MOVES P7

MOVES P8

MOVES P9

MOVES Pl0

(Stop in Q1

--- _L
takeover in

CAT mode leading
in Q'

Figure 5: Corresponding simulated robot program

MOVES Q"

STOP

choice of a
return criterium:
pursuit of the
subtask with
repositionning on
the trajectory

- 746 -

Rh Bona

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

