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ABSTRACT

Significant progress in the analysis and design of adaptive tracking control schemes
for rigid robot manipulators was achieved in the last decade [5]. Many of these schemes
have been designed at the torque input level. That is, the dynamics associated with the
actuators is neglected. Moreover to design adaptive control at the torque input level one
needs to assume that the motor drive gains are exactly known. Then, in the case of
electrically-driven robot manipulators, the gear transmission ratios, the amplifier gains,
the motor torque constants and the electrical resistance of the motor armature circuit
must be identified by using classical electrical machine techniques, or generally the
constructors data are often used.

1. INTRODUCTION

Recently it has been demonstrated [1] that considerable variation occurs in
experimental values obtained for the motor drive gains in case of an electrically-driven
robot.

To avoid the necessity of exactly knowledge of these parameters new method was
proposed in [4], to identify the dynamic model directly as a function of the motor
currents.

In this paper we assume that the drive gains are not exactly available. As will be seen
the effect of the motor drive gain uncertainty can be regarded as an input disturbance
which could cause instability or residual errors.

In order to obtain global stability in sense of Lyapunov, and asymptotically
convergence of the tracking errors, we propose the modified adaptive control scheme
based on a technique introduced in [3], which we denominate "parameter unfolding". It
consists in introducing an augmented regressor matrix and a corresponding augmented
parameter vector in the adaptation law. The overparametrization is simple to obtain and
can be seen as the unfolding of the adaptive parameter vector of the standart case
(known gains), in n similar parameter vectors. The uncertain drive gain parameters can
then be absorbed by a new estimated parameter vector.

This approach can be applied to robots with any type of actuator in which the drive
gains are uncertain parameters.
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2 - THE ROBOT MANIPULATOR MODEL

Consider an n-link rigid manipulator with revolute joints . The familiar model is
10]I

[D(q) + J]q + C(q,q)q + g(q) = u (1)

where q(t) is the joint angular position vector; D(q) is the link inertia matrix; J is the

rotor inertia matrix; Cy is the vector of centripetal and Coriolis terms; g is the gravity

torque vector and u(t) is the torque vector.

In general the torque u(t) is not applied directly. For example, for electric motor

drives, u(t) is the torque response of drives to the input voltages. Thus either the drive

gains or some more detailed dynamic model of the drive have to be accounted.
Considering only the drive gains, expression (1) results

[D(q)+J]4+C(q,q)q+g(q)=Kv (2)

where K is the diagonal motor drive gains matrix and v(t) is the control vector (eg.,

voltages).

Remark 2.1 - In the case of permanent magnet DC motor actuators, K = KmR- ', where

K. is the torque constant diagonal matrix, R is the electric resistance diagonal matrix

and v(t) is the motor terminal voltage vector.

3 - ADAPTIVE TORQUE CONTROL WITH UNCERTAIN DRIVE MOTOR
GAIN

In adaptive tracking control schemes designed at the torque input level , we compute

the torque u(t) to achieve tracking and then control the manipulator applying the

control vector

v = K0'u (3)
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where K0 is the nominal motor drive gains matrix. By combining (2) and (3) we
obtain

[D(q)+J]q+C(q,4)4+g(q)= Ku (4)

where K = KKo' and AK:= K - I is the uncertainty in the motor drive gain matrix
(I is the nxn identity matrix).

Remark 3. 1 - In the usual approaches the drive gains are considered exactly known and
thus Ka = K, AK = 0 and k = I. In this case (4) reduces trivialy to (1).

Consider that u(t) is generated according to the Slotine-Li's adaptive torque control
law 171

u=[D'(q)+J ' ]qr +C'(q,4)gr +g'(q)-Kos (5)

where D', X, C' and g' represent respectively the terms D, J, C and g of (1) with

estimated parameters , K® = KT > 0 is a diagonal design matrix, and

qr =gd - A4 ; 4=q - qd ; s=q - 4r =q-+Aq (6)

where qd is the desired angular joint position , s is an reference error and A is a
positive diagonal matrix . According 171 (5) can be rewritten in the form

t =Y(q,4 , 4r,gr )o'-Kos (7)

where Y(q,q , 4r,gr ) is an nxr matrix of known functions called regressor matrix, and
0' is the nxl vector of estimated parameters.

Denote by 0 the true parameter vector corresponding to the parametrization (5)-(6)-
(7), i.e.,

[D(q) + J]qr + C(q,4)4r +g(q) =''0 (S)

Substituting (7) and (8) in (4) we can write the error equation
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[D(q) + J]s + [C(q,q) + KKD ]s = KYO + AKYO (9)

where 9:= 0' - 0 is the parameter error.
The term AKYO in (9) may be regarded as an input disturbance, and so this closed-

loop error system is similar to that obtained in 161 where is shown that with the
"gradient" adaptation law

0, = -FYTs (10)

the closed-loop system (4)-(7)-(10) may result unstable. Hence, a robustness
improvement of the adaptive control is necessary. Stability is recovered by employing a

switching parameter a(0') in the adaptation law (10). For bounded disturbances, it can

be proved 161 that the filtered error $ converges to a residual set p depending on the

disturbance bound. Then, the tracking errors also converge to residual sets (see (6)).

Remark 3.2 - If Ka = K, there is no uncertainty in the motor drive gains and K =1. In

this case the disturbance is zero and the tracking errors q(t) -4 0 and q(t) - 0 as

t --*c 1 71.

Front the above it can be outlined that

1 - The drive gain uncertainty generates a term that can be regarded as an input
disturbance which may cause instability in the manipulator closed-loop if a torque
control with only gradient adaptation law is employed.

2 - Stability may be recovered by introducing a switching a -modification factor in the
adaptation law if the input disturbance is bounded . This unfortunately is not the present
case since AKYO is not bounded 'a priori'.

3 - The tracking errors depend on the uncertainty in the drive gains , the regressor
matrix, the true parameter vector and of design parameters, namely the gain matrix A
(see (6)).

In this paper we propose the parameter unfolding to modify the adaptive control law.

Then, global stability and global convergence to the tracking errors q(t) and q(t) to

zero can be guaranteed, even in the unknown drive gain case.
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4 - ADAPTIVE CONTROL WITH PARAMETER UNFOLDING

To achieve global stability and asymptotic convergence of the tracking errors, we
propose a modified scheme in order to absorb the drive gains K in the estimated

parameter vector.
In this paper we adopt the Slotine -Li's adaptive control scheme 171 to generate torque

signals . it should be noted that the following approach can also be used with other

adaptive control schemes.

Consider that u(t) is generated as in (7 ). From (2) and (7)

v = K-1Y0' -Kos (k0:=K1K0)

Then, the feedforward part of V is vff = K-1YO'. We wish embed the drive gains K

in the estimated parameter vector. To do this let V be written as

yT = [Y1 Y2 . . Y. 1, where ii r is the i-th row of Y. Now introduce the

augmented regressor matrix a and a corresponding augmented parameter vector ea as

follows

Y1 T o . o 0
0 y2T . 0 0

Ya =

0 0 , 0 ynT

e'a
-

Le an)

eai = [eai1 Oak flair

(12)

Here is important to stress that the elements of 0' will be regarded , in what follows,

as independent estimated parameters . This means that overparametrization is being used

and it simply generated by "unfolding " the original parameter vector 0'. This motivates
the denomination "parameter unfolding".

Now one can write

a1

a2

vn = K-1Yae' = YaKa10a K. = diag[kilr ] (14)
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where ki is the i-th diagonal element of K, and I, is the rxr identity matrix. Note the

important fact that the diagonal matrix K-1 is to the left of Y. , whereas the augmented

matrix Ka1 is to the right of Y. . The drive gains can therefore be absorbed by a new
estimated parameter vector, namely,

O a = Ka'Oa (15)

The control vector is therefore given by (see (11 ),( 14) and (15))

V=YaAa -KoS (16)

and the torque vector u(t) in ( 1) results

u = Kv = KYaOa - Kps = YaKaOa - Kos (17)

The true parameter vector is 0 (see(8)), and the corresponding true augmented

parameter vector can be given by OaT = [01 OT AT]. Correspondingly, the true

value of 0a, denoted 0a is given by Oa = [k11OT k21OT knIOT,. Then

YO = Yak K- 'Oa = YaKaOaa

Substituting (17) and (18) in (1) we can write the error equation

(18)

[D(q)+J]s+[C(q,q)+KoIs = YaKaOa

where Aa : = , - 0a is the augmented parameter error.

(19)

Now, consider the Lyapunov function candidate

2V = ST[D (q)+J]S+gTPq +Oara'Oa (20)

where I'a = I'a >O, and P = PT >0 is to be defined below . The derivative of (20)

along the trajectories of (19) is
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V = -sTKOs + gTpq + STYaK ,Aa + 8TI'a 1®a

Then with the "gradient "adaptation law

^a = -[I-,K, ]YT s

we get

V = -ST KDS + gTpq

(21)

(22)

(23)

Replacing S by its expression (6) in (23) and choosing P = 2ATK0, as in [91, one

obtains

V = -gTKD - gTATKOAq (24)

It is clear from (24) that V is a negative semidefinite function . So, invoking
Lyapunov's direct method 1 81 it can be shown that the trivial equilibrium of the closed

loop (19), (17), (22), that is [T, ST, A;]= 0 is globally stable in the sense of

Lyapunov [8[. Hence, q and q are also bounded implying that V is bounded.

Therefore, V is uniformly continuous and employing Barbalat 's lemma it can be

concluded that q -+ 0 and i -+ 0 as t -+ oo [81.

Since 1. is a free positive definite symmetric matrix, one can define the gradient

law gain as I'ak := IaKa and thus the gradient law (22) is replaced by

T
Oa = -rakYa S

where

I.k = diag[1

(25)

(26)

with arbitrary rxr I', -1, T > 0 since K. is of the special form described in (14). Then

note that F. = dia4k, 1T',,
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The complete adaptive motor voltage control is thus given by

V = YaOa- K0S (27)

Oaf = -11Y1s1 i =1,..,n (28)

where Ko > 0 (diagonal ) is a design matrix and can be chosen from lower bounds of the
drive gains (see(11)).

5 - CONCLUSION

In this paper a solution for the problem of designing a globally stable adaptive
control for rigid robots with uncertain drive gains has been presented . The new control
law is obtained by means of a special overparametrization named "parameter
unfolding". Global stability and convergence of tracking errors to zero are demonstrated.
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