
NeRF-Con : Neural Radiance Fields for Automated
Construction Progress Monitoring

Yuntae Jeon1, Almo Senja Kulinan1, Dai Quoc Tran2, Minsoo Park3 and Seunghee Park4

1Department of Global Smart City, Sungkyunkwan University, Suwon, South Korea
2Global Engineering Institute for Ultimate Society, Sungkyunkwan University, Suwon, South Korea

3Sungkyun AI Research Institute, Sungkyunkwan University, Suwon, South Korea
4School of Civil, Architectural Engineering and Landscape Architecture, Sungkyunkwan University, South Korea

jyt0131@g.skku.edu, almosenja14@skku.edu, daitran@skku.edu, pms5343@skku.edu, shparkpc@skku.edu

Abstract -
The monitoring of construction progress is crucial for en-

suring project timelines, budget adherence, and quality con-
trol. Traditional methods often involve manual inspection,
which is labor-intensive and prone to human error. We in-
troduce NeRF-Con, an innovative approach utilizing Neural
Radiance Fields (NeRF) to automate the process of construc-
tion progress monitoring. NeRF-Con can infer images that
render the construction site with a level of quality compara-
ble to reality by utilizing NeRF, which synthesizes novel views
of complex scenes from a sparse set of images. Additionally,
by employing a segmentation model, NeRF-Con can compare
these rendered images with BIM to evaluate the progress of
the work. This capability is achieved by training the model
using handheld smartphone-captured video. This paper de-
tails a method for applying NeRF in real construction sites
with data collection, pre-processing, and progress evaluation.
In assessing the model’s performance, comparisons are made
with data from mobile-LiDAR, stand-LiDAR, and BIM. With
this research, we suggest potential future studies in applying
NeRF models to construction progress monitoring systems.
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1 Introduction

In the field of construction, progress monitoring stands
as a essential work ensuring timely and cost-effective
project delivery. The advent of advanced AI and deep
learning technologies has initiated a new era of innova-
tion in this domain, enabling automated progress moni-
toring with remarkable accuracy and efficiency. In recent
years, AI advancements utilizing computer vision, such as
object detection and instance segmentation for construc-
tion object recognition, have been increasingly adopted,
transforming traditional monitoring techniques with au-
tomated, data-driven approaches. Among these advance-
ments, Neural Radiance Fields (NeRF) [1] have emerged

as a innovative approach in the field of 3D data processing
and visualization. This study introduces NeRF as a deep
learning model that excels in synthesizing photo-realistic
images by considering light and material properties, ren-
dering images on novel views in construction sites or built
environments that closely replicate real-life visuals. The
integration of NeRF into construction progress monitoring
marks a significant advancement, providing a method that
not only improves visual comprehension but also greatly
contributes to the automation and precision of tracking
construction progress.

For automating construction progress monitoring, the
integration of vision sensors and deep learning methods
has drastically changed traditional approaches. Beginning
with the use of traditional image processing skills like fil-
tering, edge and corner detection to analyze site images [2],
the approach has evolved to incorporate deep learning for
object detection [3] and segmentation [4]. This advance-
ment significantly improves the accuracy of construction
progress assessments from 2D sensors by enabling more
precise comparisons of site images with designs derived
from Building Information Modeling (BIM).

Furthermore, the progression in construction monitor-
ing has greatly benefited from the adoption of 3D scanning
technologies like LiDAR [5], which have revolutionized
the field by enabling comprehensive three-dimensional
site captures. These methods allow for detailed and pre-
cise comparisons between ongoing construction and BIM
designs. Advancements such as real-time 3D point cloud
mapping with Simultaneous Localization and Mapping
(SLAM) [6], further enhance geometry analysis in con-
struction environments. Combining these cutting-edge
3D scanning techniques with AI and deep learning signif-
icantly improves the accuracy and efficiency of construc-
tion monitoring, setting a new standard in the industry.

While previous studies in automated construction
progress monitoring have significantly utilized 2D and 3D
sensing technologies for gathering building or construction
site data, they commonly entail transforming scanned data
into a 2D image with orthogonal view [4, 7, 8]. However,
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challenges remain, such as: 1) Achieving efficiency and
quality in rendered parallel 2D images. The creation of
parallel 2D images from RGB cameras is a detailed, rule-
based process requiring manual refinement. Moreover,
while LiDAR or SLAM methods often lack the realistic
appearance of actual images, resulting in lower quality
renderings. 2) The cost and user-convenience of data ac-
quisition. Methods such as SLAM, which utilize robotic
or drone sensing, necessitate predefined operational paths.
Compared to manual, hand-held capture, these methods
are operationally more complex and constrained by envi-
ronmental factors like limited pathways or airspace, reduc-
ing their feasibility in diverse construction environments.

To address the issues of existing 2D and 3D sensor-based
methods in automated progress monitoring, we propose
an approach utilizing NeRF. This approach utilizes deep
learning to achieve a degree of realism in spatial render-
ing that significantly exceeds the capabilities of traditional
methods. A key advantage of our methodology is the use of
smartphone-captured video as input. Furthermore, our ap-
proach is not limited to rendering the site in 3D; it also gen-
erates orthogonal views, which can be directly compared
with BIM for accurate construction process monitoring.
Our NeRF-based method’s ability to generate both realis-
tic 3D renderings and orthogonal views establishes it as
a versatile and effective solution for construction progress
monitoring. We further enrich our research by testing
and comparing various NeRF models—vanilla NeRF [1],
Instant-NGP [9], and Nerfacto [10]. Utilizing the Nerfs-
tudio [10] platform, we efficiently train and visualize our
models. Our research includes the collection and analysis
of data from two different indoor scenes and one outdoor
scene, all derived from actual built environments. Our
main contributions are:

• We utilize the concept of neural radiance fields
(NeRF) to comprehend the 3D spatial information
of construction sites and render images from novel
views that closely resemble the actual environment.

• We demonstrate the use of a common smartphone
camera, easily handheld and maneuvered, to capture
videos in a user-friendly and uncomplicated manner.
These videos are then used as the input for NeRF
model training.

• We evaluate and apply the NeRF model in various
built environments, including indoor and outdoor set-
tings, specifically for the purpose of automated con-
struction progress monitoring.

2 Background

2.1 Automated progress monitoring

Computer vision technology has increasingly been ap-
plied in automated construction monitoring. Initial ap-
proaches involved image processing techniques like edge
detection and deep learning-based object segmentation to
compare material edges with as-designed BIM [2, 3, 4].
The focus then shifted to LiDAR-based 3D scanning [5],
providing detailed site comparisons with BIM, typically
evaluated using Root Mean Square Error (RMSE). Ad-
vancements continued with SLAM [6], using moving
robots capable of capturing diverse scenes, thereby en-
hancing segmentation and detection for more accurate
progress tracking against as-designed BIM. Recently, Pal
et al. [8] employed vanilla NeRF [1] to generate ortho-
graphic views of under-construction elements, performing
semantic segmentation to monitor construction progress
in comparison with BIM designs. In this paper, we utilize
various NeRF models such as vanilla NeRF, Instant-NGP
[9], and Nerfacto [10].

2.2 Neural Radiance Field (NeRF)

Neural Radiance Fields [1], or NeRF, represent a novel
approach in the field of 3D scene reconstruction from 2D
images. Traditionally, rendering realistic 3D objects in-
volved the use of expensive 3D scanners or photogramme-
try that transform images into voxel, point cloud, or mesh
forms, NeRF introduces a novel approach in novel view
synthesis. In recent, research in the field of 3D computer
vision is largely centered around the use of NeRF. First,
Vanilla NeRF [1], as the foundational model, utilizes an
Multi-Layer Perceptron (MLP) with 8 linear layers, of-
fering a distinctive approach to 3D scene representation.
It processes 3D coordinates through positional encoding
to enrich the input data, thereby enhancing the details
captured in the scene. This architecture extracts density
outputs and integrates ray viewing directions, allowing
the final RGB output to dynamically reflect how the ap-
pearance of objects changes with the viewer’s perspective.
Building on this, Instant-NGP [9] innovates by encod-
ing coordinates with HashMap and Linear Interpolation
to significantly reduce computational load and accelerate
training. This approach efficiently creates feature vectors
from selected coordinates and auxiliary values, stream-
lining the MLP processing. Finally, Nerfacto [10] builds
upon previous NeRF advancements by combining several
techniques for real data capture of static scenes. It in-
tegrates camera pose refinement, per-image appearance
conditioning, proposal sampling, scene contraction, and
hash encoding.
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Figure 1. Overview of NeRF-Con pipeline for construction progress monitoring

3 Method

Fig. 1 shows our NeRF-based method for automated
construction progress monitoring, starting with data col-
lection. This model is then trained to accurately ren-
der photo-realistic 2D images of the site from novel per-
spectives, aiming for realistic visualizations of the 3D
space. The final comparison stage involves aligning
NeRF-generated images, potentially orthographic views,
with BIM designs, employing instance segmentation for
precise progress assessment. This method, leveraging
NeRF’s strengths in 3D spatial representation and image
synthesis, offers a novel, accurate, and efficient approach
to quantifying construction progress.

Figure 2. Visualization of the actual move path for
capturing a video (above) and the Nerfacto model
application on the Nerfstudio platform (below)

3.1 Data collection

For video capture in construction progress monitor-
ing, various methods are employed, such as smartphones,
drones, and robots, which can be hand-held or integrated
into automated systems. We predominantly utilize the
iPhone 15 Pro, chosen for its high accessibility and ef-
ficiency, and employ COLMAP [11], a structure-from-
motion (SfM) technique, to extract camera poses from
image sequences. This approach, as depicted in Fig. 2,
involves using SfM, a photogrammetric method, to esti-
mate three-dimensional structures from two-dimensional
images. The process identifies key features across images
and uses their relative motion to infer depth and struc-
ture, with a focus on the epipolar line, which indicates the
trajectory of a point in one image across another, based
on camera movement. COLMAP processes video frames
to generate accurate 3D coordinates and view directions
for the camera, constructing a 3D point cloud of the site
and determining the camera’s position and orientation for
each frame. This method maintains the practicality and
convenience of data collection, ensuring regular monitor-
ing feasibility across various environments without spe-
cialized equipment. The detailed process guarantees a
precise representation of the construction site, facilitat-
ing high-precision training of the NeRF model, aligning
with our goals for efficient and comprehensive construc-
tion progress monitoring.

3.2 NeRF application

The fundamental concept of NeRF [1] involves sam-
pling points in a 3D space along rays that emanate from
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Figure 3. The architecture of the Nerfacto model

the camera’s viewpoint. These sampled points are used to
estimate both the color and the density at every location
through the scene, which are then composited into a final
image via volumetric rendering techniques. The input to
a NeRF model typically includes the 3D coordinates of
sample points, the direction of the viewing rays, and any
appearance features that characterize the scene’s proper-
ties, such as lighting or texture. The output is the rendered
2D image that approximates the real-world scene from the
camera’s perspective. Fig. 3 shows Nerfacto [10] model’s
pipeline for NeRF application at construction sites by cre-
ating photo-realistic images from captured videos.

3.2.1 Piecewise Sampler

The rendering pipeline begins with the Piecewise Sam-
pler, selecting sample points along camera rays to evalu-
ate the scene. It distributes half of the samples uniformly
within a distance of 1 (unit distance) from the camera, en-
suring a detailed sampling of nearby areas. The remaining
samples are placed with increasing step sizes, effectively
scaling the sampling frustums and allowing for a broader
coverage that includes distant objects without compromis-
ing the sampling density for closer areas. This two-part
approach can be expressed as:

𝑑𝑖 =

{
𝑖

𝑁/2 if 𝑖 ≤ 𝑁
2 ,

𝑓 (𝑖) if 𝑖 > 𝑁
2 ,

(1)

where 𝑖 is the index value of the samples, 𝑑𝑖 is the
distance from the camera, 𝑁 is the total sample count,
and 𝑓 (𝑖), a monotonically increasing function, adjusts the
samples based on conical frustum.

3.2.2 Proposal Sampler

After the initial sampling phase, the Proposal Sampler,
utilizing two density functions, refines the sample loca-
tions. Its primary goal is to maximize sampling around
surface boundaries, which are crucial for the scene’s visual
accuracy. These density functions, constituting the Den-
sity Field, guide the sampling process. Each density func-

tion in the Proposal Sampler is an MLP that receives 3D
coordinates as input and is combined with hash encoding.
This structure is designed to provide a coarse representa-
tion of density, which is crucial for efficient sampling. The
density function can be expressed as:

𝜌(x) = Θdensity(𝜙(x)) (2)

where x is a spatial coordinate, 𝜙 is a hash encoder
[9], Θdensity is MLP for density and 𝜌(x) is the estimated
density at that location. The hash encoding transforms the
3D coordinates into a suitable format for the MLP, enabling
it to compute the density. The two density fields in the
Proposal Sampler work together to concentrate sample
points around significant areas like surface boundaries.
The design of these density fields focuses on capturing only
a coarse representation of scene density. This approach
is sufficient for guiding the sampling process, ensuring
that the model concentrates computational resources on
the most important aspects of the scene without being
burdened by the intricacies of high-frequency details.

3.2.3 Nerfacto Field

The Nerfacto Field is an integral component of the ren-
dering pipeline that takes as input the 3D coordinates x,
the view direction d, and the appearance features f, and
outputs both the color 𝐶 and the density 𝜌(x) at the given
spatial location. For extracting the RGB color, the Ner-
facto Field employs a neural network function which can
be expressed as:

𝐶 (x, d) = ΘRGB (𝜙(x), 𝑆𝐻 (d), f) (3)

where ΘRGB is MLP for density, 𝑆𝐻 is the spherical har-
monic encoding of the view direction, and the appearance
features f capture the variations in scene appearance such
as lighting and material properties. The density 𝜌(x) is
inferred using the same equation to Eq. 2.
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3.2.4 Volumetric Render

The last stage in the pipeline is the Volumetric Render,
which integrates the density and color information along
the rays to form the final rendered image. This integration
can be described by the following equation:

RGBfinal =

∫
𝜌(x) · 𝐶 (x, d) 𝑑x, (4)

where the integration is performed along the ray path,
accumulating the product of density and color to yield the
final pixel color value. The rendered color RGBfinal is
then compared to the ground truth image’s RGB values,
using the L-2 distance as a loss function during the train-
ing process. This loss function quantifies the difference
between the rendered image and the actual image, guiding
the optimization of the network parameters to minimize
these discrepancies.

We delve into the application of NeRF for creating 2D
novel images. These orthogonal projected images offer a
distinctive view of construction sites. Utilizing the NeRF
model, we efficiently segment building elements through
the semantic-segment-anything [12]. This segmented out-
put is then compared with 2D plane images derived from
BIM model, which similarly employ orthogonal projec-
tions. By evaluating the segmented outcomes from the
NeRF model against those from BIM, we are able to not
only gauge construction progress with great precision but
also visually confirm the consistency with the original de-
sign. This approach provides a layered insight into project
development, facilitating a thorough comparison between
what was planned and what is being constructed.

4 Experiments
4.1 Dataset

Our study involved three experiments - two indoors and
one outdoors - using an iPhone 15 Pro for data collec-
tion. In the first indoor experiment, a 90-second site video
was captured for NeRF model training, complemented by
a 120-second mobile LiDAR (iPhone 15 Pro) scan and a
210-second FARO LiDAR scan, the latter offering higher
accuracy but at a significantly higher cost (50x expen-
sive) than mobile LiDAR. The scanning time differences
between mobile LiDAR and FARO LiDAR are due to
their operational designs. Mobile LiDAR, a handheld de-
vice, necessitates manual navigation for comprehensive
site imaging, conversely, FARO LiDAR, a stationary sys-
tem, automates image capture from all directions.

The second indoor experiment used a 120-second video
capture and the last outdoor experiment used a 20-second
video. Notably, in each experiment, we downsampled the
video frames to one-third of the total frames for both train-
ing and testing, dividing the data in a 0.9 to 0.1 training-to-

testing ratio. This methodology created a diverse dataset,
integrating various technologies for a comprehensive as-
sessment of our NeRF-based monitoring system.

4.2 Implementation details & Metrics

We utilize the Nerfstudio [10] platform for train and
visualization, and our experiments involved three NeRF
models – Nerfacto, instantNGP, and vanilla NeRF – to
compare their performance. Common settings across
these models included 200k iterations and 4096 for
train/test number of rays per batch. For Nerfacto and
instantNGP, the optimizer used was Adam with a learning
rate of 0.01. In contrast, vanilla NeRF utilized the RAdam
optimizer, featuring a lower learning rate of 0.0005. These
models were trained on an NVIDIA RTX4090 GPU, using
PyTorch version 2.0.1 and CUDA 11.8, ensuring efficient
computation and model optimization.

To evaluate the performance of our models, we em-
ployed three key metrics: PSNR (Peak Signal-to-Noise
Ratio), SSIM (Structural Similarity Index Measure), and
LPIPS (Learned Perceptual Image Patch Similarity) [13].

• PSNR: Expressed in the logarithmic decibel scale,
with values typically ranging from 20 to 30. Higher
values indicate better image quality.

• SSIM: Values range between -1 and 1. A value of
1 indicates perfect similarity between the test image
and the reference image. SSIM assesses visual im-
pacts based on luminance, contrast, and structure,
aligning more with human visual perception than
PSNR.

• LPIPS: Scores typically range from 0 to 1, where
a lower score indicates greater perceptual similarity
between compared images. Unlike PSNR and SSIM,
LPIPS leverages deep learning models to better ap-
proximate human visual perception.

4.3 Results

In our research, we conducted a comparison using two
different LiDAR sensors with NeRF-based approaches.
One of the LiDAR sensors is a mobile LiDAR embedded in
the iPhone 15 Pro, utilizing Pix4Dcatch for analysis. The
other is a stationary Faro LiDAR, known for its exceptional
precision and high cost. In contrast, for our NeRF-based
approaches, we used a smartphone or drone equipped with
only a RGB camera. Thus, we experimented with three
different NeRF models’ rendering image quality (Tab. 1)
related to creating the parallel view images and performed
an additional comparison between NeRF, stable LiDAR,
and BIM with SAM [12] (Fig. 5). We also visualized the
infeasible result from the mobile LiDAR (Fig. 6).
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Figure 4. Qualitative comparison of three NeRF models on three different scenes
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Figure 5. Visualization of semantic segmented results on 2D orthogonal images from three different sources

Method PSNR ↑ SSIM ↑ LPIPS ↓
exp#1 : smartcity room (indoor)
NeRF 10.8 0.68 0.64
Instant-NGP 30.7 0.91 0.20
Nerfacto 31.0 0.92 0.19
exp#2 : corridor (indoor)
NeRF 14.7 0.63 0.71
Instant-NGP 24.8 0.74 0.35
Nerfacto 24.4 0.73 0.37
exp#3 : under construction (outdoor)
NeRF 11.4 0.43 0.93
Instant-NGP 16.8 0.56 0.38
Nerfacto 19.1 0.57 0.22

Table 1. Quantitative comparison of three NeRF
models on three different scenes

We trained three distinct NeRF models - vanilla NeRF,
Instant-NGP, and Nerfacto - in diverse environments: a
smartcity room (indoor), a corridor (indoor), and an under
construction site (outdoor). The results, detailed in Tab. 1,
exhibit a notable trend as the spatial scale increases from a
confined room to a more expansive corridor and then to an
open outdoor space, there’s a discernible decrease in model
accuracy, as reflected by metrics such as PSNR, SSIM,
and LPIPS. This pattern suggests that the complexity and
size of the environment negatively impact the rendering
quality of these models. In particular, the outdoor scene
(exp#3) highlighted the strengths of the Nerfacto model. It
achieved a PSNR of 19.1 and an LPIPS of 0.22, surpassing
the Instant-NGP model, which managed a PSNR of 16.8
and an LPIPS of 0.38. Furthermore, the qualitative visual
results in Fig. 4 corroborate this finding, showing that in
the construction site scene of exp#3, Nerfacto outperforms
Instant-NGP, providing relatively superior visual quality.

Figure 6. Visualization of semantic segmented re-
sults on 2D orthogonal images from mobile LiDAR

Fig. 5 presents a comparison of parallel view images
from different sources. The NeRF image was obtained
from the Nerfacto model in exp#1, alongside 2D views ac-
quired from stand-LiDAR and BIM models. These images
were further processed using the SAM model. This com-
parison highlights the practical utility of applying segmen-
tation to NeRF-generated images, considering the higher
cost and lower usability of stable LiDAR sensor. We also
tested scanned images from mobile LiDAR shown in Fig.
6, but the resolution of images acquired from mobile-
LiDAR are inferior compared to stand LiDAR or NeRF.
Therefore, we can use smartphones to easily capture visual
information at construction sites and then utilize NeRF and
SAM models to visualize the level of progress.
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5 Conclusion
In conclusion, this study has successfully demonstrated

the efficacy of Neural Radiance Fields (NeRF) in automat-
ing construction progress monitoring, marking a signifi-
cant leap over traditional methods. By leveraging NeRF-
Con, we have shown that it is possible to generate photo-
realistic, 3D rendered images from simple smartphone-
captured videos, offering a more efficient, accurate, and
cost-effective solution compared to existing 2D and 3D
sensor-based methods. The application of NeRF in vari-
ous environments - small room, corridor, construction site
- proves the robustness and versatility. The integration
with segmentation models to compare these renders with
BIM designs, ensuring more precise and automated mon-
itoring of construction progress. In conclusion, our pro-
posed methods, NeRF-based rendering and SAM-based
comparison with BIM, can enable more efficient project
planning and facilitate communication among construc-
tion site stakeholders.

In future work, we aim to address two main challenges:
the decline in NeRF model’s rendering accuracy with in-
creased spatial scale, especially outdoors, and the cur-
rent reliance on only qualitative SAM result images for
progress monitoring. Our focus will be on optimizing
NeRF’s application for large outdoor sites and develop-
ing quantitative assessment methods, such as completion
percentages, to enhance automated progress monitoring.
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