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Abstract -
Accurate localization plays a crucial role in the effective

operation of autonomous robotics systems, especially in dy-
namic environments such as construction sites. Simultaneous
Localization and Mapping (SLAM) utilizing LiDAR sensors
has emerged as a popular solution due to its ability to func-
tion without external infrastructure. However, existing al-
gorithms exhibit significant shortcomings. Despite current
methods achieving high accuracy over long trajectories, they
struggle with precision and reliability in complex indoor en-
vironments. This paper introduces a novel feature-based
LiDAR SLAM system designed to address these limitations
and enhance short-term precision and overall robustness.
The proposed system is evaluated using both existing datasets
and a physical robot platform, addressing the limitations of
current implementations and showcasing improved perfor-
mance in challenging real-world scenarios, particularly in
construction environments.
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1 Introduction

Localization is a critical component of nearly all au-
tonomous robotics systems. Accurately understanding the
robot’s pose relative to its environment is often crucial for
navigation and manipulation tasks. While GPS can some-
times be sufficient for outdoor environments, more com-
plex approaches are typically needed for indoor environ-
ments due to significant signal attenuation by the building.
In warehousing and manufacturing, autonomous robots are
conventionally localized using visual markers placed in the
environment or external camera systems with fixed posi-
tions. These approaches have enabled increased robotic
automation which has lowered costs, increased workforce
productivity, and improved efficiency [1]. However, these
approaches are often not feasible in construction due to
construction sites continuously evolving throughout the
building process. This makes setting up external localiza-

tion systems difficult.
One popular solution is to use onboard sensors to per-

form simultaneous localization and mapping (SLAM), al-
lowing autonomous systems to localize in previously un-
mapped environments. SLAM can provide high-accuracy
and precise positional estimates in indoor environments,
without the need for any external infrastructure. One popu-
lar onboard sensor for performing SLAM is LiDAR, which
typically uses the time of flight data of a laser to measure
distances to nearby obstacles. These distance measure-
ments are converted to a point cloud, providing a 3D rep-
resentation of the environment. LiDAR has numerous
advantages over cameras such as direct measurement of
depth and invariance to lighting conditions. This elim-
inates scale ambiguities and allows for robust measure-
ments, even in harsh or dim lighting conditions such as
those commonly present in night-shift work operations.
Additionally, LiDARs are not impacted by textureless or
highly repetitive textured environments, which are com-
mon in construction (e.g. unfinished/unfurnished rooms,
brick walls).

Over the last couple of decades, various algorithms and
frameworks have been proposed for performing LiDAR-
based SLAM. One of the most popular and robust of the
recent methods is LIO-SAM [2]. LIO-SAM uses a range-
image generated from a point cloud to extract LOAM [3]
features. It then uses frame-to-frame matching and frame-
to-global-map matching, along with GTSAM [4] to gen-
erate a 3D point cloud of the environment and localize the
LiDAR within it. Additionally, LIO-SAM tightly couples
the LiDAR and IMU, allowing for point cloud deskewing
and full utilization of the IMU data in the factor graph op-
timization. Unlike other more recent point-based methods
such as ART-SLAM [5], LIO-SAM is feature-based and
thus more computationally efficient. This allows it to run
on smaller robots without a GPU. As such, it has become
a popular option for mobile robots and is used extensively
in the research community [6, 7, 8, 9].

While LIO-SAM has been shown effective on multiple
datasets, it has several limitations that make it sub-optimal
for real-world localization of a navigating autonomous sys-
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Figure 1. An overview of the proposed algorithm

tem. Despite achieving high long-term trajectory accu-
racy, LIO-SAM often provides poor short-term precision.
This results in large short-term errors in the pose esti-
mate that can lead to navigational issues and poor map
quality. These issues are particularly evident when work-
ing with robotic systems that exhibit high vibrations (such
as quadruped robots) or systems utilizing cheaper, lower-
quality IMUs. Additionally, the algorithm lacks robust-
ness in complex environments where limited visibility of
the ground planes and LIO-SAM’s lack of consideration
for surface normals leads to weak constraints on the roll,
pitch, and z-height. This can lead to complete loss of
tracking in many confined indoor environments, such as
stairways and small rooms. These limitations make current
implementations unreliable in common construction envi-
ronments, endangering the robot and the people around
it.

To address these issues, we present a novel feature-based
LiDAR-inertial SLAM system that significantly improves
short-term precision and overall robustness. The proposed
system is validated on existing datasets and a physical
robotics platform.

2 Methodology

Figure 1 shows an overview of the different modules in
the proposed algorithm. Unlike existing approaches, the
proposed algorithm first organizes the cloud into a 𝐶x𝑁
array (organized cloud), where 𝐶 is the number of chan-
nels in the LiDAR, 𝑁 is the number of samples taken per
revolution of the LiDAR, and each element in the array is
a point storing its x, y, z, and intensity values. This pre-
processing step speeds up computations of later steps in
the pipeline, enabling real-time performance. After orga-
nizing, the cloud is deskewed using IMU data to undo any
distortions caused by rotations of the LiDAR sensor over
the capture interval of the point cloud. This is necessary
as LiDARs typically output their data as scans (one full ro-
tation of the laser array) which contains points captured at
different times over the scan period. Deskewing removes
any distortions caused by rotations of the sensor over the
scan period. The deskewed point cloud then undergoes

feature extraction where planar points (Figure 2) and edge
points (Figure 3) are extracted from the cloud using novel
proprietary feature extractors. Planar points are further
clustered into individual planes. Unlike LIO-SAM which
labels points as planar based on the local roughness of the
range image, we consider the full 3D positions of each
point and its neighbors to more reliably identify planar
surfaces and remove non-planar points. Additionally, our
approach efficiently estimates the normals of the points,
providing us with richer features and additional informa-
tion during feature matching and pose optimization. The
individual planes, each containing a point cloud of their
constituent points, along with an edge cloud comprising
all the edge points, are subsequently assembled into a
Frame object. This Frame is initialized with an initial
pose derived from the last predicted pose and the IMU’s
orientation estimate.

Figure 2. Example of extracted plane points

Figure 3. Example of extracted edge points
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An iterative process is then used to match the features
and optimize the pose of the current frame with respect
to the key frames. At each iteration, a 3-stage matching
approach is used to first match the Frame to its nearest
key frames, then match the Frame’s planes to the selected
key frames’ planes, and finally match planar and edge
points in the Frame to the planar and edge points stored
in the matched planes and key frames’ edge clouds. The
feature matching step results in a set of planar and edge
correspondences that are used to calculate multiple error
metrics. These metrics are minimized with respect to the
Frame’s pose using Newton’s method. The Frame’s esti-
mated pose is then updated and the iterations are repeated
until we converge on a pose or have repeated a set number
of iterations. The final pose of the LiDAR is returned as
the final output of the system. If needed, the frame is
added to the key frames to iteratively grow the map.

Ultimately, our approach differs from LIO-SAM in three
main ways. First, we organize the cloud and use the full
3D positions of the points during feature extraction, in-
stead of using the range image. The organization of the
point cloud allows us to compute features in a compa-
rable amount of time to LIO-SAM while utilizing more
of the point cloud’s information. Second, we do not use
LOAM features, and instead use novel feature extractors
that extract more reliable planes and edges. Our edge de-
tector explicitly handles edges caused by occlusions and
our plane detector efficiently estimates normals, providing
more information for pose optimization. Our use of dif-
ferent feature extractors also enables us to utilize 3-stage
feature matching which exploits the additional information
captured by the features to improve matching accuracy.
Lastly, our method uses key framing to efficiently repre-
sent the map, enabling frame-to-global-map matching for
every frame. This results in a highly memory-efficient map
representation and limits the short-term drift, improving
the short-term precision of the localization estimate.

An additional difference in the current implementation
is that we do not use a factor graph to optimize the global
map or fuse IMU orientation estimates into our pose graph.
This is a limitation of our current approach as it can lead to
larger long-term drift for very long sequences. However,
we plan to address this issue in future work by incorporat-
ing our design with GTSAM [4].

3 Experiments
To evaluate the performance of the proposed approach

against a baseline, the algorithm is quantitatively com-
pared to LIO-SAM on an existing construction site dataset,
as well as qualitatively evaluated on physical robotics hard-
ware. LIO-SAM provides a good baseline as it requires the
same sensors (a 360-LiDAR and an IMU), is also feature-
based, and requires similar computational resources. For

numerical analysis, we primarily evaluate the accuracy of
the localization estimates, as localization is the primary
use case of real-time SLAM algorithms for most systems.
Additionally, localization can be evaluated more directly
than map quality and better localization directly leads to
improved mapping.

3.1 Hilti Dataset

To evaluate the absolute positional accuracy, both al-
gorithms were tested on some of the additional sequences
provided by the Hilti SLAM Challenge 2022 dataset [10].
This dataset provides ROS bag recordings of LiDAR and
IMU sequences collected from various construction and
indoor environments using a Hesai Pandar XT-32 LiDAR.
Vitally, the dataset also provides millimeter-accurate syn-
chronized ground truth poses collected with a motion-
capture system. This allows direct comparison of the pre-
dicted and ground truth trajectories.

To enable both algorithms to process the data, the point
clouds were preprocessed to convert them into a Velodyne
point format (does not change any data, but changes point
format). Additionally, the IMU data was preprocessed as
both algorithms expect the IMU to provide fused orien-
tation estimates. These were generated using the open-
source imu filter madgwick package [11]. To provide a
wide range of difficulties and environments, 5 sequences
from the dataset were tested. These are Exp04, Exp05,
Exp06, Exp14, and Exp18.

Table 1. Dataset statistics for Hilti sequences calcu-
lated based on the ground truth poses

Dataset
Max
Pitch
/ Roll
(◦)

Mean
Ang
Vel
(◦/s)

Mean
Lin
Vel
(m/s)

Max
Ang
Vel
(◦/s)

Max
Lin
Vel
(m/s)

Exp04 10.968 19.970 0.606 142.194 1.886
Exp05 17.324 17.110 0.561 146.696 1.616
Exp06 58.033 38.971 0.617 263.522 2.408

The first three scans were captured on three floors of
a real-world indoor construction site with progressively
more aggressive motions. The three datasets all include
variations in Z-height, open and confined spaces, and tilt-
ing in both pitch and roll. Table 1 provides some statistics
generated from the ground truth poses provided by the
datasets. Exp06 in particular offers very fast motions and
aggressive rotations. Both Exp04 and Exp05 were des-
ignated as easy difficulty by the dataset creators, while
Exp06 was designated as medium difficulty due to the fast
motions.

Captured in more demanding indoor settings, Exp14
and Exp18 both present challenging sequences with ge-
ometric ambiguity and confined spaces. Notably, Exp14
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showcases a rectangular staircase, while Exp18 incorpo-
rates a spiral staircase at the beginning and end of the
sequence, resulting in their classification as medium and
hard difficulty, respectively.

Table 2. Results from the Hilti Sequences, N/A in-
dicates an algorithm lost tracking and could not re-
cover

Seq Algorithm
Trans
RMSE
(m)

Trans
SD
(m)

Rot
RMSE
(◦)

Rot
SD
(◦)

Exp04 LIO-SAM 0.1670 0.0879 1.486 0.355
Ours 0.1147 0.0566 0.966 0.493

Exp05 LIO-SAM 0.0945 0.0450 0.873 0.336
Ours 0.1124 0.0564 1.818 1.055

Exp06 LIO-SAM 0.3599 0.2274 2.258 1.053
Ours 0.4825 0.2578 4.098 1.707

Exp14 LIO-SAM N/A N/A N/A N/A
Ours 0.7966 0.5292 3.985 1.559

Exp18 LIO-SAM N/A N/A N/A N/A
Ours 0.7979 0.5713 10.433 3.854

The two algorithms were evaluated on all five sequences
using a Ryzen 5600H processor, processing the data in
real-time. The predicted poses were captured and stored
in a text file, and then synchronized with the ground truth
poses using timestamps. For evaluation, translation er-
rors were calculated using the Euclidean distance between
the estimated and ground truth trajectories. The rotation
errors were calculated as the smallest angle between the
estimated and ground truth orientations. The root-mean-
square (RMSE) and the standard deviation (SD) of the
translational and rotational errors are reported to evaluate
the accuracy and consistency of the estimated trajectories
in Table 2.

Figure 4. Predicted trajectory (red) versus ground
truth (green) for Exp14 using our approach

As shown in Table 2, our approach achieved better re-
sults in 3 of the 5 sequences. Importantly, Exp14 and
Exp18 show that our approach is more robust than LIO-
SAM by completing the sequence. LIO-SAM on the other

hand lost tracking in the first 5 seconds of both sequences
due to starting in confined spaces and having to navi-
gate stairways. Additionally, most of the errors in Exp14
occurred in the last few seconds due to the cloud being
highly geometrically ambiguous as a result of the transla-
tional symmetry of the stairway (Figure 4). Exp18 also
highlights the generalization capability of our approach
to various built environments. While the other sequences
primarily feature standard built environments, Exp18 was
captured in a gallery with curved walls, ornate columns,
and tight walkways. Despite there being few truly planar
surfaces, our plane extractor was able to identify locally
planar surfaces and outperformed LIO-SAM, completing
the sequence.

Figure 5. Angled view of the predicted trajectory for
Exp06 using our approach

Our algorithm also achieved better performance on
Exp04. Upon initial inspection, it seems that LIO-SAM
exhibited slightly better performance in Exp05 and Exp06.
However, as shown in Figure 5 and Figure 6, our approach
produced a smoother and more locally accurate trajec-
tory, despite experiencing some additional drift in roll and
pitch that resulted in comparable but slightly higher overall
RMSE. This additional drift is due to how our algorithm
integrates the IMU data into our pose estimates. Currently,
our algorithm only utilizes the IMU data for initial pose es-
timation and point cloud deskewing. However, IMUs also
generate attitude measurements, which provide absolute
constraints on the roll and pitch of the system. Since our
system does not fuse the IMU orientation estimates with
our final predicted pose, our algorithm is more susceptible
to long-term drift in the roll and pitch axes for longer se-
quences with aggressive motions. Therefore, even though
our system provided better short-term estimates for Exp 05
and Exp06, the full trajectory errors were slightly higher.
Future work will focus on reducing these errors by reinte-
grating the IMU data into the LiDAR pose estimate follow-

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

991



(a) LIO-SAM’s predicted trajectory

(b) Our predicted trajectory

Figure 6. The predicted (red) and ground truth
(green) trajectories for Exp06 (cloud generated from
ground truth for reference)

ing Gauss-Newton optimization. Nevertheless, even with
our current implementation, the preference for a smoother
and locally accurate trajectory for navigation purposes may
outweigh the marginal gain in long-term positional accu-
racy offered by LIO-SAM. A similar story was observed
in Exp05.

3.2 Quadruped Robot Dataset

While the Hilti SLAM Challenge dataset provides real-
world sequences collected via a high-quality hand-held
system, it may not be fully representative of the types of
trajectories followed and the vibrations produced by many
robotics systems. To evaluate the algorithm on a robotics
platform, our algorithm and LIO-SAM were evaluated on a
dataset collected in an indoor environment using a teleop-
erated Unitree Go1 quadruped robot equipped with a Velo-

dyne VLP-16 LiDAR and a YostLabs 3-Space Micro USB
IMU (Figure 7). Compared to the Hilti Dataset, the data
produced by this system is much noisier due to lower IMU
precision, high vibrations due to the robot’s walking gait,
and a lower precision LiDAR. Additionally, the LiDAR
has a very limited field-of-view (30◦) and lower resolution
(only 16 channels), providing an additional challenge to
the SLAM system. Both algorithms took less than 50 ms
to process each frame.

Figure 7. Lab robot used to collect dataset

Figure 8 shows a close-up of the resultant trajectory and
generated map. While the overall trajectories produced by
both algorithms were similar, the difference in short-term
precision becomes apparent. During the test, LIO-SAM
suffered from poor short-term precision in the predicted
pose. This is likely due to their strategy of performing
frame-to-global map matching at a slower rate than frame-
to-frame matching, as well as vibrations picked up by the
IMU. Our approach did not suffer from these issues and
produced a much smoother and more accurate trajectory.
Additionally, our 3-stage matching approach can use nor-
mal information to distinguish between the two sides of
a wall, accurately recovering the thicknesses of the walls.
Meanwhile, LIO-SAM uses only proximity during match-
ing, meaning both sides of the wall typically merge into a
single plane, making it difficult to recover the geometry of
the building. This has significant implications for build-
ing information modeling (BIM) as wall thicknesses are
often of great interest for accurately modeling the building
geometry.

As shown in Figure 9, the higher precision in predicted
poses also leads to improved map quality and sharper point
clouds. The difference is most evident when comparing
the thin legs of the chairs, and the guard rail by the stairs.
Improved map quality is of significant importance for tasks
such as object detection, where sharper maps translate to
lower noise in the object point clouds, capturing finer de-
tails of the object and improving the odds of accurate clas-
sification or segmentation. Additionally, the reduction in
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(a) LIO-SAM’s predicted trajectory

(b) Our predicted trajectory

Figure 8. The predicted trajectory (yellow) and re-
sultant map for the quadruped robot dataset (from
same viewing angle)

noise in the object point clouds can improve the precision
of measurements between object features, enabling more
accurate object modeling.

Local stability in the estimated pose is also crucial for
autonomous navigation. Poor short-term positional drift
can cause the robot to temporarily assume it is too close
or inside an obstacle, causing it to react unpredictably or
sporadically. This can lead to jerky or dangerous recovery
behaviors where the robot attempts to continuously re-plan
its trajectory around obstacles. Our algorithm generates
smoother, more accurate local trajectories than LIO-SAM,
which can lead to less time spent re-planning and more
consistent robot behavior.

4 Conclusion
In this study, we present a novel, computationally

lightweight, LiDAR SLAM system for real-time localiza-
tion and mapping. The proposed system was designed as
a stand-alone C++ package to be used with 360 LiDAR
scanners. The system was evaluated on a real construc-
tion dataset as well as on a quadruped robot. The system

(a) Map produced by LIO-SAM

(b) Map produced by our approach

Figure 9. Example maps recovered by LIO-SAM and
our approach using the quadruped robot

achieved state-of-the-art performance on the majority of
the datasets and demonstrated improvements in the pose
estimate’s robustness and precision.

While the proposed system provides clear advantages
for the localization of autonomous systems, it does have
some limitations. The current approach only uses the IMU
for initial pose estimation and deskewing the cloud. This
leads to eventual drift in roll and pitch as the IMU data is
not utilized during pose estimation. Future work will inte-
grate the final pose estimates with a factor graph to enable
more flexible integration of additional sensors. This will
also allow us to incorporate attitude or preintegrated IMU
factors, improving the pitch and roll estimation over long
trajectories.
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