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Abstract – 

The accurate detection of soil boundary levels is 

vitally important for creating the correct solutions for 

the earthwork phases of construction. In Building 

Information Modeling (BIM), subsoil models are 

interpolated from information obtained from ground 

investigations. Our study focused on the adaptive use 

of geological uncertainty modeling to derive 

additional information during excavation. The results 

show that the continuous mapping of excavated 

ground is an effective estimation tool for modeling 

boundary levels. This adaptive tool can significantly 

decrease uncertainty in earthwork, presenting new 

possibilities for productivity and sustainability. The 

results of this study enable comparisons of alternative 

options in adaptive uncertainty modeling during 

excavation, allowing for the development of 

uncertainty-based subsoil models for construction. 
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1 Introduction 

As the development of construction technology is 

focusing on questions related to productivity, safety, and 

sustainability, many are facing the challenge of adopting 

progression with the prevailing conditions of practice. In 

response to this challenge, building information 

modeling (BIM) tools were introduced, and they have 

played a crucial role in coordinating the planning and 

construction phases, addressing unforeseen problems, 

and facilitating information sharing between disciplines. 

These interdependent interactions between various 

engineering disciplines are built on information that is 

initially available. 

In many cases, the problems that arise during 

construction are a result of the limited or partial 

information available during the planning phase. Because 

unforeseen problems are solved onsite, they tend to be 

reactive rather than proactive. Although many 

construction phases are flexible in the face of emerging 

challenges, certain planning disciplines, such as 

geotechnical engineering, rely on preliminary 

information to develop solutions for the entire 

construction process. The reactive nature of problem-

solving in such cases creates challenges in terms of not 

only timetabling and costs but also overall planning 

solutions. 

Proactive modeling addresses this issue by providing 

a more accurate estimation of ground conditions, but it 

requires updated soil models. Until now, achieving this 

has involved additional soundings, soil sampling, or 

boreholes to create new modeling conditions, 

simultaneously incurring additional costs due to extra 

ground mapping. 

A recent study by Satyanaga et al. [1], which 

reviewed the current state of BIM applications for 

geotechnical engineering, focused on the integration of 

geological and geotechnical information into modeling 

the planning and construction phases using case studies. 

Their findings correlate with our study’s hypothesis that 

there is a lack of flexibility to create adaptive models for 

implementation when applying preliminary information 

with finite element method calculations. There is a need 

for further research to create less intricate and 

calculation-dependent modeling tools when applying 

geotechnical information. Vanicek et al. [2] concluded 

that BIM modeling is behind other engineering 

disciplines in terms of the effectuation of geological and 

geotechnical information. This has much to do with the 

site-specific properties of soil parameter determination. 

Constitutive models of ground conditions require soil 

sampling and sounding results to create a condition map 

of an entire area. Since soundings and soil samples 

represent point-specific information, there is an element 

of uncertainty in interpolating these points. Similar 

findings regarding soil parameter uncertainty in BIM 

modeling have found support in the studies of Beaufils et 

al. [3] and Wu et al. [4]. 

According to Wiegel et al. [5], the development of 

geotechnical modeling with geostatistical information 

and uncertainty modeling improves overall decision-

making and sustainability in construction. They 
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highlighted that tools for incorporating geotechnical 

information into BIM models are still under development. 

In addition, they pointed out that, although different 

methods of uncertainty modeling are available, the 

integration of these methods with BIM models is not 

ready. We found no study in which the uncertainty of 

subsoil models was updated with adaptive soil boundary 

detection during excavation. 

Pakyuz-Charrier et al. [6] concluded that overlooking 

the amount of uncertainty distorts the accuracy of the 

modeled area. The handling of uncertainties in geological 

information can either enhance or distort a 3D subsoil 

model, as pointed out in studies between 2001 and 2018 

[7], [8], [9], [10], [11]. All of these studies were founded 

on the understanding that information fed into the 

uncertainty model is gathered beforehand and 

interpolated to create the modeled area. As preliminary 

information, the sounding, sampling, and borehole 

information has only limited room for flexibility during 

construction.  

The risks of utilizing subsoil models with partial or 

inaccurate information can, in many cases, actualize 

economic loss. Estimations of cut and fill volumes, for 

example, can significantly impact tendering bids, 

transportation estimates, contract schedules, and 

emission calculations. This was the case in the 

Autostrada1 motorway construction project, with 

Skanska Poland estimating that each centimeter of excess 

excavation at depth would incur costs of EUR 1 million 

[12]. In this way, uncertainty modeling, together with the 

automatic implementation of geotechnical and geological 

BIM models, can prevent major errors in calculations and 

analyses [13].  

Developments in construction safety and productivity 

have had an increasing impact on the digitalization of 

infrastructure construction. Automation has allowed 

worksite information management to incorporate BIM 

modeling. For this, accurate subsoil models are crucial 

(Fig. 1), and with the state of the art of geotechnical 

modeling today, they require intermediary software and 

investment in data gathering and storage, according to 

Hiltunen et al. [14].  

 

 

Fig. 1 BIM data and subsoil models create the 

basis for automated excavation in earthwork 

construction. 

The aim of our study is to investigate the potential of 

adaptive geological information derived during 

excavation by studying the effects of incorporating new 

information into a geological uncertainty model and then 

creating a verified soil boundary and geological model 

for an entire excavated area.  

Based on the main aim, the following questions are 

addressed by our study: 

1. How does the uncertainty of a geological model 

develop when excavation is conducted 

a)  systematically from one end of an 

uncertainty model to another 

b) from the most uncertain area of the model 

outwards? 

2. What is the potential for adaptive boundary 

detection in geological modeling? 

3. What are adaptations of uncertainty modeling with 

updated geological information in the future? 

2 Materials and methods 

2.1 Uncertainty modeling 

The method used in our study for modeling 

uncertainties in the determination of geological 

boundaries was based on kriging interpolation and 

Bayesian statistics [15]. This approach was theoretically 

inspired by the 3D geological uncertainty modeling of 

Wellmann et al. [16], although it was adapted to typical 

geotechnical conditions in infrastructure projects. In such 

projects, relatively few geological boundaries are 

typically expected, and geological conditions are only of 

interest within a limited area below the ground surface. 

For computational efficiency, the uncertainty modeling 

code was developed in 2D, with the resulting surface 

representing a specific geological boundary of interest. 

The uncertainty model used in this study was 

implemented in Sweden by Tyréns AB as part of its 

GeoBIM concept, with the company providing a direct 

connection to a geotechnical database. Uncertainty 
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modeling was performed using Python code running on 

a server and controlled by the user through a Microsoft 

Teams interface.  

The user was asked to evaluate the most probable 

vertical location of the geological boundary at each 

measurement point (e.g., geotechnical drilling and 

soundings). The minimum and maximum possible 

locations of the same boundaries were evaluated by the 

user, and these input data were used to construct a skew-

normal distribution for each measurement point. These 

distributions represented all possible boundary-level 

values in the measurement points and their corresponding 

likelihoods. The uncertainty modeling was then, in short, 

based on an iterative approach, in which random 

boundary-level values were drawn from the uncertainty 

distributions of Svensson et al. [17]. This was followed 

by kriging interpolation of the boundary surface. Since 

the input boundary levels varied for each iteration, the 

approach resulted in an estimation of how uncertainty in 

the determination of the boundary level propagated from 

individual measurement points to the surface model as a 

whole.  

In addition to this propagated uncertainty, the 

variance of the kriging interpolation, which is linearly 

proportional to the distance to the measurement points, 

was also taken into consideration. Both types of 

uncertainties (i.e., spatial variance and propagated 

uncertainty) were weighted together for the final 

quantification of the total measurement uncertainty of the 

modelled surface. In addition, the model output is also 

the most probable bedrock level as well as the minimum 

and maximum bedrock levels. 

2.2 Study area and data collection 

In an earlier study, Svensson and Friberg [18] 

successfully validated the algorithm used in the 

uncertainty model implemented at Tyréns AB to study 

the top boundary of bedrock in three separate 

infrastructure projects in Sweden. From these 

infrastructure projects, five uncovered and surveyed 

areas were mapped and studied alongside the uncertainty 

model created using preliminary information derived 

from Swedish JB-sounding (Soil-Rock soundings) 

investigation points.  

Svensson and Friberg [18] produced a one-step 

verification system in which the preciseness of the 

uncertainty model was verified according to the results of 

the uncovered bedrock boundaries. The uncertainty 

model was not updated during the excavation of the 

bedrock boundary. 

Using a three-step process, our study verified the 

development of the uncertainty model when new 

information was introduced into the algorithm during 

excavation. First, the estimated soil boundary that had 

been updated during excavation was verified with 

additional sounding points not used in the initial model. 

This produced additional data points for the algorithm 

with the same estimated uncertainty as the initial points. 

Second, the updated model was verified with soil 

samples, which produced additional data points with 

minimal estimated uncertainty. Third, the true soil 

boundary was mapped from the excavated ground. 

This three-step method enabled us to verify the 

development of uncertainty with adaptive information 

derived during excavation using the prevailing conditions 

of practice. This broad adaption of data points enabled 

the generalization of the adaptive uncertainty modeling, 

since it was not dependent on certain information-

gathering methods while the ground conditions were 

mapped. 

Our study area site description represents a typical 

Scandinavian friction subsoil consisting of an aggregate 

sandy gravel layer on top of a moraine base layer. The 

sandy gravel layer’s depth varied from 1.00 m to 13.48 

m below the ground. On average, the depth was 12.40–

12.60 m (Fig. 1). This site was chosen because of the 

varying depth of the soil boundary, which created an 

uncertainty variation around the site area (Fig. 2).  

The geological uncertainty model was created for a 

50 m × 75 m area. The initial information for the 

uncertainty model was taken from nine measurement 

points. The soil boundary level was measured by static-

dynamic penetration tests, producing an estimated soil 

boundary depth with a 20 cm difference in the 

evaluations of the minimum and maximum possible 

locations of the same boundaries. The actual boundary 

depth from these points was verified by soil sampling. 

The test site was then divided into a 5 m × 5 m mesh 

grid, from which the verified soil boundary level of each 

grid square was introduced into the uncertainty model. 

The true soil boundary level was verified from surface 

model measurements of the excavation pit floor, 

additional soil sampling, and static-dynamic penetration 

test results not used in the initial uncertainty model. 

 

Fig. 1 Verified uncertainty model of the test site’s 

sandy moraine layer. 
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Fig. 2 Initial geological uncertainty condition map 

of the test site. Uncertainty increases according to 

the shade of red. The initial measurement points 

are visualized with black and white “T” symbols. 

2.3 Data processing and analysis 

The data collected from the surface model 

measurements of the excavation pit floor, additional soil 

sampling, and static-dynamic penetration test results 

were processed into the uncertainty model to create two 

separate scenarios. These scenarios were simulated to 

study the adaptive properties of the geological 

uncertainty model—that is, how the algorithm adjusted 

the estimate of soil boundary levels—when the 

calculation parameters were refined.  

Because, in most cases, soil boundaries vary in height, 

the uncertainty model’s development is dependent on the 

weighted distance in which the data points are defined in 

contrast to one another. The longer the distance, the 

greater the uncertainty (traditional standard procedure). 

In our study, we compared the development of the 

uncertainty model when the distance was largest between 

the data points (i.e., the uncertainty was adjusted at the 

beginning of the excavation) with a case in which 

excavation took place with a traditional one-end-to-

another approach. 

Using the aforementioned three-step verification 

system, additional sounding data points and soil sampling 

were introduced as alternative sources of adaptive 

information. The estimated soil boundary uncertainty 

between the minimum and maximum possible locations 

was kept steady at 20 cm throughout the entire area. 

In the first scenario, the uncertainty modeled area was 

systematically excavated from the western boundary 

toward the east (Fig. 3). In the second scenario, the 

excavation was modeled from the most uncertain area 

outward (Fig. 4). The development of the uncertainty 

model was reviewed in 20% increments as an estimation 

of the volume of sandy gravel layers. 

 

Fig. 3 Development of the uncertainty model in 

Scenario 1, with excavation boundary levels in 20% 

increments. 

 

Fig. 4 Development of the uncertainty model in 

Scenario 2, with excavation boundary levels in 20% 

increments. 

3 Results 

3.1 Systematic excavation from west to east 

The results show that the uncertainty of the model 

decreased methodically as the excavation proceeded 

toward the eastern end of the test site (Fig. 5). The most 

probable level of volume estimated for the sandy moraine 

layer decreased below the end result as the excavation 

advanced from 40% to 60%. This was due to the most 

uncertain area of the site being located at the approximate 

center of the excavation. As the excavation modeled the 

correct level for the uncertain area, with 60% of the 

excavation completed, the estimation corrected itself 

back to the original trend of the development. 

Even with largely varying uncertainty around the test 

site, with 60% of the excavation completed, the 

difference in the volume-level uncertainty was 29.46% 

for the completed excavation (Table 1). The uncertainty 

in the volume level, with the initial measurement point 

data alone, had a difference of 82.58% compared to the 

completed excavation. 
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Table 1. Results of uncertainty during systematic 

excavation from west to east. 

Model 

Upper 

level 

(m3) 

Most 

probable 

level (m3) 

Lower 

level 

(m3) 

Difference in 

volume-level 

uncertainty (%) 

0% 24,274 29,080  33,929  82.58% 

   
20% 24,909 29,178  33,473  72.39% 

  
40% 27,271 30,646  34,023  50.91% 

  
60% 26,392 29,088  31,790  29.46% 

  

80% 28,183 30,411  32641  10.53% 

  

100 % 28,282 30,286  32,294  0% 

 

Fig. 5 Development of the uncertainty model as 

excavation systematically proceeded from west to 

east. 

3.2 Excavation from the most uncertain area 

outward 

When initially mapping the most uncertain parts of 

the excavation area, and extending the excavation 

outward from there, the decrease in uncertainty was more 

effective and linear. The largest development in the 

uncertainty model, excavating with this approach, 

occurred in the first 20% of the excavation (Fig. 6). Here, 

uncertainty decreased by 35.09% (Table 2).  

As the excavation progressed, the difference in 

volume-level uncertainty was 15.03% compared to the 

completed excavation, when 60% of the test site had been 

mapped. Compared to the systematic excavation from 

west to east, where the difference at the same percentage 

increment was 29.46%, the percentage difference 

between these two scenarios was 64.86%. 

Table 2. Results of uncertainty in the excavation from 

the most uncertain area outward. 

Model 

Upper 

level 

(m3) 

Most 

probable 

level (m3) 

Lower 

level 

(m3) 

Difference in 

volume-level 

uncertainty (%) 

0% 24,274  29,080  33,929  82.58% 

   
20% 26,523  29.749  33,473  53.60% 

  
40% 27,252  29,901  32,992 

  

35.44% 

  
60% 27,854  30,185 

  

32,518 

  

15.03% 

  

80% 28,275  30,317 

  

32,363 

  

1.88% 

  

100% 28,282 30,286  32,294  0% 

 

Fig. 6 Development of the uncertainty model as 

excavation proceeded from the most uncertain 

area outward. 

4 Discussion 

4.1 Potential and limitations of adaptive 

boundary detection in geological modeling 

The use of adaptive boundary detection reduces the 

level of uncertainty when interpolating between 

measurement points and mapping boundary levels. In the 

future, this could have a large effect on the planning 

phases of geotechnical solutions, excavation, and 

transport. As the expected volumes of excavated soil 

become more precise, the planning of cut and fill 

volumes and possible aggregate consumption and 

emissions calculations will become more efficient and 

effective. The detection of soil boundary depths will 

allow for more precise geotechnical calculations in 

earthwork solutions, such as stabilization, preloading, 

and settlement, and for a more proactive approach to be 

taken to unforeseen problem-solving. The need for 

additional ground investigations after the initial planning 

can be reduced to a necessary minimum in cases where 
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the detection of boundary levels during excavation is 

sufficient. This can help in cost- and timetable-effective 

construction, as ground condition mapping is one of the 

most costly phases of planning. These benefits are vital 

for contractors and clients to ensure that projects proceed 

according to the expectations of the tendering proposal. 

An algorithm continuously updated with the best 

estimate (±2 std. dev., 95% uncertainty) [18] of boundary 

levels would be the best possible tool to achieve this goal. 

Adaptive uncertainty models can potentially lead to 

precise, boundary-based autonomous excavation, with 

the excavation models dictating how the excavation 

adapts to changes in soil boundaries while in progress. 

This can create more dynamic uses for unmanned 

excavation through BIM–model interaction.  

As the computational requirements of autonomous 

excavation do not seamlessly interact with the prevailing 

conditions of practice in excavation, a middle-ground 

solution utilizing modeling tools that can be incorporated 

in near real time into machine-control models can help 

with the interaction. Our proposed adaptive uncertainty 

model can create a tool that enables an autonomous 

excavator to excavate with precision, where earlier 

machine control models were more robust in their 

definitions. The uncertainty model could provide 

additional tools for contractors to create more precise and 

effective tendering offers while using traditional means 

of excavation. 

As a tool, uncertainty modeling does not exclude the 

need for thorough ground investigations. Since the 

effectiveness of the model relies on the initial 

information fed into the calculations from measurement 

points, the ground investigation planning should be as 

detailed as possible. The initial uncertainty model 

provides vital information on the mapped area and, as our 

results show, allows for variable results depending on the 

execution of the excavation. 

The evaluation of the minimum and maximum 

possible locations of boundaries plays an important role 

in total uncertainty. In our case, when the location 

difference was set at 20 cm, the degree of compaction in 

the soil played an important role. Due to the degree of 

compaction, static-dynamic penetration produced results 

per 20 cm increment. This is not the most precise 

sounding method available, and by choosing the most 

accurate method, depending on the soil type, the 

uncertainty can be minimized. 

4.2 Adaptive geological uncertainty modeling 

in the future 

BIM applications for geotechnical engineering are 

under widespread development, although one obstacle to 

their development concerns differences in the conditions 

of practice. To address this, uncertainty modeling allows 

individual uncertainties to be set for each investigation 

location, depending on the quality of the data to be 

obtained through various methods.  

The same aspect of flexibility can be capitalized on in 

adaptive modeling since there are multiple methods for 

boundary detection. The integration of uncertainty 

modeling tools into BIM applications should be 

conducted with the same type of principles. To 

implement uncertainty modeling in everyday work, it is 

necessary to make the tool available without the need to 

install additional programs, learn new interfaces, and 

manage new data formats. An example of this is the 

uncertainty modeling tool used in our study.  

This modeling method was incorporated into the 

Microsoft 365 Teams platform, which many users 

already know and can access. By making uncertainty 

modeling available on a platform that is already widely 

used in the industry, the threshold for starting to use the 

method was significantly reduced. 

5 Conclusion 

This study introduced an adaptive utilization method 

for geological uncertainty modeling. The results derived 

from the test site data indicate that adaptive updates of 

ground mapping information can significantly reduce the 

uncertainty of earthwork. Since the information utilized 

can be sourced from multiple information sources (i.e., 

the mapping of excavated ground), the method can be 

widely adapted to the prevailing conditions of practice. 

The main benefits of adaptive uncertainty modeling are 

the creation of precise and effective information during 

earthwork phases without additional work phases or 

significant costs. 

At present, uncertainty modeling tools are not in 

widespread use. Further development of the algorithm 

depends on operational experience derived during field 

tests. Because the algorithm for calculating soil 

boundaries and the accompanying uncertainties depend 

on the individual uncertainty of each data point, the 

amount of information gathered from various test sites, 

which is effectively a ground condition database, can 

significantly advance the algorithm’s development.  

Such a database can help determine how various 

geological parameters and the distances between data 

points are weighted, depending on how much they should 

influence the calculation, thereby advancing the 

calculation of site-specific conditions by converging the 

predicted excavated soil boundaries with the individual 

uncertainties in each data point. 
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