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Abstract -
The adoption of autonomous systems is a foreseeable ne-

cessity in the construction sector due to work hazards and
labor shortages. This paper presents a semantic 3D under-
standing module that creates 3D models of construction sites
with highlighted regions of interest for shotcrete application.
The approach uses YOLOv8m-seg and SiamMask for ro-
bust semantic segmentation together with RTAB-Map and
InfiniTAM for visual odometry and 3D reconstruction. Our
method is the first step towards a novel, autonomous robot
for shotcrete spraying and finishing. The effectiveness of our
approach is shown on a mock-up construction site and pro-
vides evidence for the applicability of robotic construction.
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1 Introduction
The construction sector is among the industries that have

not undergone a major digital transformation. Within the
European Union (EU), it stands out as one of the least
digitalized industries [1]. Furthermore, construction work
is skilled labor, posing demands on the labor market that
are not met today: A European Labor Authority report
shows that 13 out of 30 regions are reporting shortages of
Concrete Placers and Finishers [2]. Construction work is
also known to be highly hazardous with Eurostat reporting
the highest incidence of non-fatal work-related accidents
in the EU, reaching almost 3000 accidents per 100,000
employed persons [3].

Aiming to alleviate these challenges and enhance overall
efficiency, the construction industry is gradually embrac-
ing digital advancements [4]. In particular, the application
of semantic 3D reconstruction, through computer vision
systems and deep learning algorithms, plays a critical role
in enabling precise 3D digital models of the scene. This
advancement allows for the creation of rich Building and

Construction Information Models (BIM/CIM) and Me-
chanical, Electrical, and Plumbing (MEP) systems [5],
targeting the development of digital models of the con-
struction site to ensure time-sensitive decision-making and
streamline project progress monitoring.

Additionally, real-time 3D reconstruction featuring se-
mantic annotations can be used to measure the thickness
level of ground support walls. This is especially valu-
able in shotcrete tasks, where dry concrete is sprayed onto
the wall surface. Shotcrete processes subject workers to
health hazards due to concrete rebound and rely heavily on
the expertise of nozzlepeople to determine the amount of
concrete necessary for effective filling [6]. Consequently,
this method often leads to a substantial waste of concrete.
Enabling advanced imaging systems to monitor and con-
trol the procedure can significantly improve accuracy and
worker safety and reduce excess use of material [7].

This paper presents a robust real-time method for se-
mantic 3D reconstruction tailored for robotic construction
applications. It introduces a novel computer vision system
for the detection and reconstruction of shotcrete construc-
tion sites, using YOLOv8m-seg for semantic segmentation
and InfiniTAM for 3D reconstruction.

The main contributions of this paper are summarized as
follows:

• Compilation of a new semantic segmentation dataset
and training of a robust segmentation model.

• Introducing an integration strategy between 3D re-
construction and semantic segmentation, adapted for
robotic applications within construction sites.

The paper is organized as follows: In Section 2, the latest
advancements in semantic segmentation, 3D reconstruc-
tion, and computer vision datasets tailored to construction
sites are outlined. Section 3 provides a comprehensive
analysis of each proposed pipeline component and the in-
teraction between them. Section 4 demonstrates the exper-
imental assessment, and Section 5 concludes this paper.
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2 Related work
2.1 Semantic segmentation

Semantic segmentation is one of the key components
necessary for a robotic system to analyze its surroundings.
With the advent of deep learning, a boost in performance
gave the computer vision community momentum to re-
search new, deep-learning-based, methods for semantic
segmentation. These methods allow for parameter-less
inference methods and do not rely on extensive domain
knowledge. U-Net [8] is a popular, one of the first deep-
learning-based semantic segmentation models [9] with an
application in biomedicine. DeepLabV3 [10] is another
popular model for semantic segmentation. It made its
debut in 2017 and is the result of incremental develop-
ments based on the first [11] and second [12] versions
of DeepLab. The use of atrous convolutions and atrous
spatial pyramid pooling makes DeepLab have a larger re-
ceptive field and thus higher-resolution feature maps, re-
taining more information in deeper layers. This enables
the integration of both local and global contexts when ex-
tracting features. HRNet [13] was released in 2020 and
also addresses the issue of retrieving and maintaining high-
resolution representations from the input image. The main
contributions of HRNet are the so-called parallel multi-
resolution convolutions and repeated multi-resolution fu-
sions.

YOLO (You Only Look Once) [14] is a popular series
of Convlutional Neural Network (CNN)-based object de-
tection models, first released in 2016 and consequently
developed up to this date in various versions [15, 16, 17,
18]. Its latest version, YOLOv8, provides a unified frame-
work for image classification, object detection, instance
segmentation, object tracking, and pose estimation. Ar-
chitectural details concerning this model can be found in
[19]. It provides an easy-to-use interface for training the
various tasks and integrates well with experiment tracking
tools, ensuring quality control.

Other recent advancements like Segment Anything [20]
or BEiT-3 [21] are departing from CNN-based architec-
tures and use Transformer-based models trained on large-
scale datasets, providing foundation models capable of
tackling multiple downstream tasks.

In our work, we combine YOLOv8m-seg with a mask
tracking model to stabilize predictions obtained from a
low-data model.

2.2 3D reconstruction

Recently there has been a notable effort to integrate deep
learning techniques into 3D reconstruction approaches.
Specifically, this effort focuses on Neural Radiance Fields
(NeRF) [22], and its variants such as Instant-NGP NeRF
[23]. These methods are pivotal elements that boosted

3D reconstruction. Typically, NeRF-based methods use a
regression technique for opacity and color together with
numerical integration, predicting the real step of the vol-
umetric rendering function based on images with known
camera poses. Robotic applications of 3D reconstruction
in the construction industry include Inspection-NeRF [24]
as a method for capturing surface defects in the form of
RGB-D images, collected by a wall-climbing robot to cre-
ate a 3D model and its bounding box, aligning it with
the NeRF implicit boundary. In the work of [25], seman-
tic segmentation is applied to a 3D model generated by
Instant-NGP to construct BIM models from a sequence
of construction site images. Additionally, conventional
methods such as Clustering Multi-View Stereo (CMVS)
and Patch-based Multi-View Stereo (PMVS) [26], are de-
ployed for dense 3D reconstruction in construction sites.

Notwithstanding the advancements in NeRFs, these
techniques require absolute scale recovery and entail sig-
nificant computational time requirements, especially when
handling large-scale scenes such as construction sites [27].
More specifically, 3D reconstruction pipelines that inte-
grate camera pose estimation methods and dense mesh-
ing frameworks have demonstrated their superior feasi-
bility for 3D reconstruction in time-sensitive construc-
tion projects [28]. KinectFusion [29] paved the way for
approaches using real-time volumetric Truncated Signed
Distance Fields (TSDF), resulting in InfiniTAM [30]. This
method uses RGB-D input to perform real-time recon-
struction. To accomplish that, it enables a module for esti-
mating camera poses with a keyframe-based relocalization
system and provides globally consistent reconstruction,
using either TSDF or surfel methods. Additionally, most
recent RGB-D or stereo approaches are using real-time
TSDFs from Euclidean Signed Distance Fields (ESDFs)
to formulate implicit surfaces [31].

In this study, InfiniTAM is investigated as a real-
time modular method and its integration with the well-
established visual SLAM algorithm, namely RTAB-MAP
[32], is explored to achieve more accurate results.

2.3 Computer Vision datasets in construction

Examples of datasets focusing on computer vision
in construction include the Alberta Construction Image
Dataset [33], datasets for safety helmet detection [34, 35],
and the SODA dataset [36], designed for general-purpose
object detection in construction environments. For spe-
cific construction activities, datasets such as CODEBRIM
[37] address concrete inspection, while others like [38] fo-
cus on window installation. Regardless, publicly available
datasets captured in construction environments, specifi-
cally tailored for robotic application in construction areas,
remain a scarce resource. Consequently, we compiled
custom datasets for our application.
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Figure 1. System overview of the proposed and integrated methods

3 Methodology
The structure of our method is illustrated in Figure 1.

It is composed of several modules with their respective
submodules which are covered in detail in the following.

3.1 Semantic understanding

The proposed end-to-end deep-learning-based pipeline
consisting of YOLOv8 and SiamMask needs to be trained
to yield sensible results. YOLOv8 and SiamMask were
selected due to their state-of-the-art performance. Further-
more, YOLOv8 has a well-known architecture, ensuring
reliable and interpretable results. We use an unmodified,
pre-trained SiamMask model. Thus, the training efforts
concern YOLOv8m-seg. The following section describes
experiments carried out to obtain a well-performing se-
mantic segmentation module.

3.1.1 Training setup

The training goal is to teach the model how to segment
areas where shotcrete needs to be applied. We stipu-
late that such areas are easily identified by exposed re-
inforcement bars. The model is therefore trained to de-
tect exposed reinforcement bars. We compiled a small
dataset for this task: detecting exposed reinforcement bars
in wooden structures, without a significant presence of
other objects. The dataset restricts the appearance of ar-
eas in which shotcrete is applied, to rectangular areas with
a rather uniform, wooden background and good lighting
conditions. In real-life conditions, these areas are less reg-
ular in shape and have a bigger variety of backgrounds and
lighting conditions. The dataset consists of three splits:

• Training: 515 frames, 580 instances
• Validation: 191 frames, 167 instances
• Testing: 210 frames, 210 instances

We train the YOLOv8m-seg model for 100 epochs with
default hyperparameters recommended by [19].

3.1.2 Pre-training procedure

We perform a custom pre-training schedule as follows:

1. Train the YOLOv8m bounding box detection model
from COCO pre-trained weights provided by [19]
on the COCO dataset with augmented, synthetic re-
inforcement bars [39], for 100 epochs. All COCO
classes are used, plus an “ExposedBars” category.

2. Considering the epochs from step 1., we use the
weights that achieved the best bounding box mean
Average Precision (50-95) (mAP50-95) as a starting
point and train on the CODEBRIM dataset [37] with
CODEBRIM classes, as well as on an augmented
version of the dataset with synthetic reinforcement
bars.

3. Use weights from the last epoch of step 2. as the
custom pre-trained weights to start training the seg-
mentation model on the dataset described in 3.1.1.

Figure 2 shows the values of the segmentation loss (both
evaluated on the training and validation dataset split) and
the development of mask precision and recall (evaluated
on the validation dataset split) over training epochs. The
losses and metrics show no sign of overfitting, i.e., the vali-
dation loss increasing while the training loss is decreasing.
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Figure 2. Training and validation losses per epoch (left) and Mean Mask Precision and Mean Mask Recall per
epoch (right)

3.1.3 Robustness enhancement

Perturbations of the input image sequences, e.g., ro-
tations and distortions, which are often encountered from
cameras mounted on mobile robots can lead to cases where
the segmentation model cannot re-detect previously seen
areas with exposed reinforcement bars. To counteract this,
an object-tracking model is deployed. The semantic seg-
mentation model in combination with the tracking model
constitutes the complete semantic understanding module.
The tracking model used for this task is SiamMask [40],
using the default pre-trained model on the DAVIS dataset
[41] as well as the default configuration provided by the
developers.

When the segmentation model detects an object, the
tracker is initialized with the respective image and bound-
ing boxes. They are stored in a first in, first out (FIFO)
queue of images and bounding boxes. When the segmen-
tation model fails, the tracker pops a bounding box and the
corresponding image from the queue to find the content of
the bounding box in the current image.

We evaluate the effect of the tracking model on the se-
mantic understanding module. The module is tested on
the validation and testing sequence of the dataset, both
with disabled and enabled tracking. We use a FIFO queue
length of 1 and default confidence thresholds for both
the segmentation model and the tracker model. Figure 3
shows plots of the mean Intersection over Union (mIOU)
calculated on all available IOUs up to that frame. Both
plots indicate the superior performance of the semantic
understanding module when the tracking model is used as
an additional layer to recover false negatives. The bene-
fit is mainly pronounced on the test dataset split, as the
segmentation model fails and thus activates the tracking
submodule more often. A video showcasing the benefit

of the module can be found at [42]. In this video, frames
with red masks show the output of a tracked mask when
the segmentation module failed to produce an output.

In conclusion, the SiamMask tracking model can in-
crease robustness in the case of the segmentation model
failing on objects/areas it has detected once before.

3.1.4 Hyperparameter tuning

This section evaluates the influence of tracker and seg-
mentation model hyperparameters on the overall perfor-
mance measured in mean precision, mean recall, and
mIOU. We perform a grid search on these parameters,
to maximize mIOU on the test set:

1. Tracker FIFO queue length (QL), search range:
{1, 2, ..., 11}

2. Tracker Confidence Threshold (TCT), search range:
{0.1𝑘 |𝑘 ∈ {1, 2, ..., 9}}

3. Segmentation Confidence Threshold (SCT), search
range: {0.1𝑘 |𝑘 ∈ {1, 2, ..., 9}}

Contrary to common practice, the sweep is conducted on
the test split. This is due to the minimal effect of the
tracker on the validation split.

We found that the 10 best-performing runs exclusively
use a QL of 2 together with medium to high TCTs (0.6 –
0.8) and medium to low SCTs (0.1 – 0.4). The 10 worst-
performing runs tend to use medium to high QLs (6-10),
medium to high TCTs (0.6-0.9), and a high SCT (0.9).
This suggests the usage of a QL of 2 together with a low
SCT and a high TCT. We have chosen QL=2, SCT=0.4,
TCT=0.9, achieving a mIOU of 0.85 together with mean
Precision (mP)=0.96 and mean Recall (mR)=0.88 on the
test split.
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Figure 3. Temporal development of detections and mIOU, on the validation (left) and test (right) splits. Green
dashed line shows the current mIOU with tracking enabled, whereas the orange line indicates the scenario with
tracking disabled.

3.2 3D Reconstruction

The 3D reconstruction process uses RGB-D input, ob-
tained through a stereo-vision camera to infer a real-time
3D mesh. The 3D reconstruction module comprises the
subsequent submodules:

3.2.1 3D mesh creation

Aiming to develop an end-to-end modular pipeline, we
strategically applied the InfiniTAM algorithm. Its key ad-
vantage over recent approaches is the capability to synthe-
size accurate 3D surfaces in real-time, addressing absolute
scale recovery and long computational time issues com-
mon in other methods, as reported in [27], which is crucial
for dynamic and expansive scenes such as construction
sites. Furthermore, it seamlessly integrates with stereo
sensors, typically used for robotic vision applications.

In particular, InfiniTAM infers TSDF-based volumet-
ric reconstruction, using hash tables. It relies on RGB-D
input to segment the scene into rigid subscenes and re-
fines their relative poses to build a coherent overall map.
During the camera pose prediction, it adjusts the current
camera position to track the sensor frame, aligning surface
measurements with the model estimation [30].

It is worth noting that our approach strongly depends
on the performance of the stereo camera, as conventional
RGB-D cameras may face limitations in composing depth
images in semi-indoor scenes with changing illumination
conditions. To fulfill these objectives, the Roboception
RC-Visard 160 stereo camera was deployed.

3.2.2 Odometry estimation

During our experiments, we observed poor relocal-
ization performance of vanilla InfiniTAM, when dealing

with partial and noisy surface measurements, captured
under conditions of reduced overlap. To address this
challenge, we conducted a thorough investigation of the
camera pose estimation. Leveraging InfiniTAM’s mod-
ularity, we looked into the integration of a more robust
camera pose estimation module. For this, we deployed
the well-established visual odometry method RTAB-Map
[32], which is a flexible Graph-Based SLAM technique,
to create dense 3D reconstructions. Consequently, the in-
tegration of an advanced external camera pose estimation
played a significant role in developing a robust real-time
3D reconstruction method, demonstrating adaptability in
handling complex environments such as construction sites.

3.3 Integrated system

The proposed system consists of two interconnected
major submodules: semantic understanding and 3D recon-
struction. The semantic understanding module deploys a
YOLOv8m-seg [19] segmentation model, stabilized with
the SiamMask [40] segmentation mask tracker, adept at
robustly identifying exposed reinforcement bars. The 3D
reconstruction module incorporates an external odometry
estimation component and employs TSDF volumetric re-
construction, leveraging RTAB-Map [32] and InfiniTAM
[30], respectively.

As illustrated in Figure 1, the integrated method follows
these steps: Given the sensor data (RGB image, depth
image) as an input, the semantic understanding module
infers a mask, marking areas with exposed reinforcement
bars in each image. Simultaneously, the sensor data is used
to obtain a visual odometry estimation. Combined with
the segmentation mask and sensor depth measurements,
the 3D reconstruction module constructs a semantic 3D
model of the environment. This model can be used to
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acquire a digital representation of the construction site
in real-time, streamlining the planning and execution of
robotic shotcrete operations.

4 Experimental evaluation
4.1 Experimental process

We tested our pipeline at a semi-indoor construction site
featuring wooden panels, both with and without exposed
reinforcement bars. We tested before shotcrete applica-
tion, as depicted in the upper part of Figure 4. The 3D
reconstruction module processed data captured by a Robo-
ception RC-Visard 160 stereo camera. The semantic un-
derstanding module inferred masks for areas with exposed
rebars.

4.2 Results

Qualitative results are presented in the lower part of
Figure 4. The semantic understanding module precisely
identified regions of interest, denoted by cyan masks.

We measured the effectiveness of the integrated frame-
work in terms of its geometric precision by applying a
manual procedure to measure the point-to-point distances
of the wooden frames within the 3D model, correspond-
ing to the segmented area. The vertical and horizontal
dimensions of the real wooden frame were measured to
be 2 meters long and 1 meter wide. We selected sev-
eral 3D point pairs in the point cloud (𝑋,𝑌, 𝑍) to mea-
sure their distances and assess the accuracy of the scene
reconstruction. Specifically, the experiment involved 12
point-to-point measurements of the frame’s dimensions,
as illustrated in Figure 5. Subsequently, we compute the
root mean square error (RMSE) by comparing the dis-
tances of the real wooden frame with the distances of the
reconstructed 3D model. The RMSE amounts to 0.564
centimeters.

5 Conclusion

We proposed a real-time method for semantic 3D re-
construction for robotics-based construction applications.
Our method uses a robust semantic understanding module
using a custom YOLOv8m-seg segmentation model and
the SiamMask mask tracker, together with RTAB-Map for
odometry estimation and InfiniTAM for 3D reconstruc-
tion. The resulting semantic 3D mesh model is an impor-
tant step towards introducing robotic systems in shotcrete
construction to improve worker safety and alleviate labor
shortages. Our experimental evaluation concluded that
the developed method is applicable for semantic under-
standing and reconstruction of semi-indoor construction
scenes, highlighting regions of interest before performing

Figure 4. Upper part: samples of two images of
the testing area within the construction site. Lower
part: semantically annotated 3D mesh model, where
regions of interest are highlighted in cyan.

Figure 5. Samples of point-to-point measurements
of the 3D reconstruction accuracy

shotcreting. The novel approach was tested under real-
istic construction site conditions, showcasing good per-
formance in terms of RMSE, mIOU, mean precision and
mean recall. We believe that the method can be extended
to accommodate other common shotcrete application sce-
narios, as well as to spark general interest in introducing
advanced computer vision approaches to challenging con-
struction tasks.
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[32] Mathieu Labbé and François Michaud. “RTAB-
Map as an open-source lidar and visual SLAM
library for large-scale and long-term online oper-
ation”. In: Journal of Field Robotics 36.2 (2019),
pp. 416–446. doi: https://doi.org/10.1002/
rob.21831.

[33] Bo Xiao and Shih-Chung Kang. “Development of
an Image Data Set of Construction Machines for
Deep Learning Object Detection”. en. In: Journal of
Computing in Civil Engineering 35.2 (Mar. 2021),
p. 05020005. issn: 0887-3801, 1943-5487. doi:10.
1061/(ASCE)CP.1943-5487.0000945.

[34] url: https://www.kaggle.com/datasets/
andrewmvd/hard-hat-detection.

[35] Liangbin Xie. Hardhat. 2019. doi: 10.7910/DVN/
7CBGOS.

[36] Rui Duan et al. “SODA: A large-scale open site ob-
ject detection dataset for deep learning in construc-
tion”. In: Automation in Construction 142 (2022).
Citation Key: DUAN2022104499, p. 104499. issn:
0926-5805. doi: https://doi.org/10.1016/
j.autcon.2022.104499.

[37] Martin Mundt et al. “Meta-Learning Convolu-
tional Neural Architectures for Multi-Target Con-
crete Defect Classification With the COncrete DE-
fect BRidge IMage Dataset”. In: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR). Long Beach, CA, USA: IEEE, June
2019, pp. 11188–11197. isbn: 978-1-72813-293-8.
doi: 10.1109/CVPR.2019.01145.

[38] Jiesheng Yang et al. “Computer Vision for Con-
struction Progress Monitoring: A Real-Time Ob-
ject Detection Approach”. In: arXiv:2305.15097
(May 2023). arXiv:2305.15097 [cs]. url: http:
//arxiv.org/abs/2305.15097.

[39] Haoyu Wang et al. “Synthetic Datasets for Rebar
Instance Segmentation Using Mask R-CNN”. en.
In: Buildings 13.3 (Feb. 2023), p. 585. issn: 2075-
5309. doi: 10.3390/buildings13030585.

[40] Qiang Wang et al. “Fast Online Object Track-
ing and Segmentation: A Unifying Approach”. In:
2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). Long Beach,
CA, USA: IEEE, June 2019, pp. 1328–1338. isbn:
978-1-72813-293-8. doi: 10.1109/CVPR.2019.
00142.

[41] F. Perazzi et al. “A Benchmark Dataset and Evalua-
tion Methodology for Video Object Segmentation”.
In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Las Vegas, NV: IEEE,
June 2016, pp. 724–732. isbn: 978-1-4673-8851-1.
doi: 10.1109/CVPR.2016.85.

[42] Patrick Schmidt. RobetArme Stabilized SiamMask
output. Youtube. 2024. url: https : / / www .
youtube.com/watch?v=In6euNHw_Sk.

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

903

https://arxiv.org/abs/2201.05989
https://arxiv.org/abs/2201.05989
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1109/ISMAR.2011.6092378
http://arxiv.org/abs/1611.03631
https://doi.org/https://doi.org/10.1002/rob.21831
https://doi.org/https://doi.org/10.1002/rob.21831
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000945
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000945
https://www.kaggle.com/datasets/andrewmvd/hard-hat-detection
https://www.kaggle.com/datasets/andrewmvd/hard-hat-detection
https://doi.org/10.7910/DVN/7CBGOS
https://doi.org/10.7910/DVN/7CBGOS
https://doi.org/https://doi.org/10.1016/j.autcon.2022.104499
https://doi.org/https://doi.org/10.1016/j.autcon.2022.104499
https://doi.org/10.1109/CVPR.2019.01145
http://arxiv.org/abs/2305.15097
http://arxiv.org/abs/2305.15097
https://doi.org/10.3390/buildings13030585
https://doi.org/10.1109/CVPR.2019.00142
https://doi.org/10.1109/CVPR.2019.00142
https://doi.org/10.1109/CVPR.2016.85
https://www.youtube.com/watch?v=In6euNHw_Sk
https://www.youtube.com/watch?v=In6euNHw_Sk

