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Abstract -
Over the past few years, research has focused on lever-

aging computer vision in construction progress monitoring,
particularly in comparing construction photologs to Build-
ing Information Modeling (BIM), with or without schedule
data. The practical application of these techniques and a
large number of startups that have brought hyper AI and
human-in-the-loop services around progress monitoring have
revealed several gaps: 1) Current BIM-driven projects do not
have model disciplines at the right level of maturity and Level
of Development; 2) definitions of states of work-in-progress
that are detectable from images are not formalized; 3) poor
schedule quality and lack of frequent progress update chal-
lenges the incorporation of detailed 4D BIM for progress
tracking. Such gaps are addressed in this work by exploring
the requirements for mapping modern computer vision tech-
niques for object segmentation with construction schedule
activities to automate progress monitoring applications using
computer vision without BIM as a baseline. The approach
utilizes reality mapping practices to offer time machines for
construction progress, organizing photologs over space and
time. Additionally, this work shows how Large Language
Models can structure schedule activity descriptions around
<Uniformat Object Classification, Location>, focusing on
how vision and language models can be trained separately
with limited annotated data. ASTM Uniformat classification
is utilized to map triangulated object segments from images
to color-coded 3D point clouds aligned with schedule activi-
ties without the need for image and language feature align-
ments. Exemplary results on tied new transformer-based
models with few-shot learning are shown, and the require-
ments for full-scale implementation are discussed.

Keywords -
Automated Progress Monitoring; Artificial Intelligence;

Computer Vision; Natural Language Processing

1 Introduction
The field of construction progress monitoring has wit-
nessed significant advancements in recent years, primarily
driven by the integration of computer vision techniques
and BIM. Specifically, leveraging devices such as LiDAR
(Light Detection and Ranging), 360-degree cameras, and
drones, a prevalent approach involves comparing gener-
ated as-built point clouds with the as-planned BIM model
to assess construction progress by identifying deviations
or discrepancies [1]. The integration between computer
vision and BIM has enabled stakeholders to gain compre-
hensive insights into the construction process, facilitating
improved decision-making, resource allocation, and offer-
ing real-time data analysis and project visualization [2].

However, despite these advancements, several critical
gaps persist, posing challenges to the effective implemen-
tation of computer vision-based progress monitoring ap-
plications:

• Lack of BIM model disciplines at the right level of ma-
turity and Level of Development (LoD): The current
computer vision-based progress monitoring relies
heavily on the quality and completeness of BIM mod-
els. Insufficient BIM LoD and maturity in model dis-
ciplines, particularly around work zones and ASTM
Codes, create discrepancies when attempting to align
as-built point clouds with the as-planned BIM model
[3, 4].

• The absence of formalized definitions for states of
work-in-progress detectable from images: The lack
of formalized definitions for work-in-progress states
detectable from images poses challenges, especially
in visually complex indoor environments with occlu-
sion complexities like wall layers. [5, 6]. Estab-
lishing clear and universally accepted definitions for
construction states is crucial for enhancing the ac-
curacy and comparability of progress assessments in
diverse project environments.

• Poor schedule quality and lack of frequent progress
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update: The effectiveness of 4D BIM, integrating the
temporal dimension, relies heavily on schedule qual-
ity and BIM LoD. However, the suboptimal schedule
quality, varying schedule granularity, and infrequent
progress updates impede the alignment of real-time
progress with the as-planned 4D BIM model [7].

This paper addresses these gaps by investigating the
requirements for mapping modern computer vision tech-
niques, specifically object segmentation, to construction
schedule activities. The focus is on automating progress
monitoring applications using computer vision as a stan-
dalone tool without relying on BIM as a baseline. To
achieve this, this work proposes leveraging reality map-
ping practices that effectively organize photologs over
space and time, providing time machines for construction
progress.

Furthermore, this work explores how Large Language
Models (LLMs) can play a pivotal role in structuring
schedule activity descriptions, emphasizing key elements
such as Action, Location with an emphasis on utilizing
the ASTM Uniformat classification to map triangulated
object segments from images to space. Exemplary results
from a novel transformer model, coupled with few-shot
learning, are presented, and the paper concludes by dis-
cussing the requirements for the full-scale implementation
of these proposed methodologies. Identified gaps and spe-
cific challenges and solutions are covered in detail in the
following sections.

2 Literature Review
This section reviews the current state-of-the-art in con-
struction for the creation of semantically rich point clouds,
and how both visual and text feature information have been
automatically aligned in different fronts of computer vi-
sion. Additionally, this section covers the main strategies
widely utilized for mapping progress against schedules,
specifically focusing on the challenges presented when
aligning progress information against construction sched-
ule documents. Lastly, BIM-based progress extraction
methods are explored and further discussed as a function
of their advantages and challenges.

2.1 Point cloud generation and segmentation

Point clouds, obtained via 3D laser scanning or similar
technologies, consist of data points in a three-dimensional
coordinate system. LiDAR, using laser beams, accurately
generates detailed 3D representations of structures and en-
vironments, capturing geometry and spatial information at
construction sites. Photogrammetry, another method, ex-
tracts 3D details from 2D images taken by cameras or
drones. The process involves estimating camera parame-

ters and correlating pixels between cameras to triangulate
depth information [8, 9].

After creating a 3D point cloud, machine learning algo-
rithms are used to classify individual points into categories
such as building components and Mechanical-Electrical-
Plumbing (MEP) systems[10]. However, existing detec-
tion systems often depend on complete object visualiza-
tions, making them sensitive to occlusions and capture
completeness. In the context of photogrammetry-based
point cloud reconstruction, classification to correlate 2D
information with the 3D point cloud is achieved through
numerous novel image-based classification and segmenta-
tion techniques, only using 2D features.

For example, [11] employs traditional vision-based
algorithms using shape and color information to in-
fer indoor partition wall progress. Others adopt deep-
learning approaches like MaskRCNN [12], YOLO [13],
and Transformer-based Swin [14] to directly detect con-
struction elements from 2D images [15, 16]. Despite
some photogrammetry approaches mapping camera pix-
els to real-world coordinates, the projection of semantic
information from 2D inputs onto point clouds remains un-
derexplored [16].

2.2 Image and Text Information Mapping

In the realm of Computer Science, significant progress has
been made in mapping information between images and
text as multimodal learning. Notable developments in-
clude pre-trained vision-language models like CLIP [17]
and mPLUG [18], which demonstrate the capability to
understand and associate textual descriptions with visual
content. However, construction projects involve unique
terminologies, specialized jargon, and context-specific in-
formation that may not be adequately addressed by generic
image-text mapping models. Addressing these limita-
tions is essential for creating effective tools that can as-
sist professionals in the construction industry, providing
them with streamlined access to information and enhanc-
ing communication between textual project descriptions
and visual project elements.

2.3 Progress Against Schedules in Construction

Proactive construction workflows rely on critical schedule
updates. Researchers have explored automated methods
for optimizing schedules based on underlying reasons of
sequencing logic [19], physical building component rela-
tionships [20, 21], aligning different levels of schedules
[22], and ensuring consistency with BIM, schedule, and
payment applications via ASTM Uniformat classifications
[7]. These approaches often involve natural language pro-
cessing and machine learning algorithms. However, the
usefulness of the ASTM Uniformat II to properly report
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visual progress information against construction schedules
is often ignored and poorly explored.

2.4 BIM-based Progress Monitoring Applications

Traditionally, progress monitoring has been based on com-
paring documented reality against plans, and through the
standardization of the usage of BIM, numerous research
have explored this data format for calculating construc-
tion progress. This is seen in BIM methods to drive
Earned Value Analysis (EVA) [23] through geometry and
time-based heuristics. Similarly, other works have relied
on geometry information from BIM models to compute
progress when compared against photogrammetry-based
point clouds and proximity-based heuristics [3, 4], eventu-
ally incorporating 4D BIM [24] to determine the presence
of built elements over time. More advanced implemen-
tations eventually considered detecting semantics from
images to increase the correct detection of construction
elements against BIM elements [25, 26].

While these lines of work pioneered one of the great
avenues of progress monitoring using BIM, they were ex-
posed to dependencies on the BIM LOD, leaving a wide
gap to properly comparing reality against plan given the
lack of 4D adoption that could connect progress against
construction documents and schedules or the incorrect
comparison between visible elements without semantics
in a point cloud cluster and their intersection against BIM
elements.

3 Method
The proposed methodology addresses one of the appli-
cations proposed in [27]. This method consists of a
four-step approach model ensemble to create connections
between vision and language features. At a high level,
this is achieved by aligning orthographic projections of
semantically rich photogrammetry point clouds against
quantity-take-off (QTO) construction drawings to detect
completed quantities of each classification of construc-
tion object classes based on the ASTM Uniformat II. Si-
multaneously, this method leverages corresponding logi-
cal sequences from a construction schedule to determine
the completeness constraints of overlapping construction
classes as part of the sequence logic, constrained to a spe-
cific location, generally denoted in a construction drawing.
Such imposed logical constraint allows for the correction
of observed quantities in segmented point clouds due to
occlusion and point cloud completeness issues, which are
present in most photogrammetry-based point cloud recon-
structions. Figure 1 presents a graphical representation of
the description presented above.

The first step leverages modern computer vision
Structure-from-Motion (SfM) [8] and Multi-View Stereo

(MVS) [9] algorithms to create unstructured three-
dimensional as-built representations of the construction
environment from video capture frames or cameras 𝐶𝑖 .
At this stage, and specifically during the depth estimation
for each pixel 𝑃 𝑗 of a registered and localized camera 𝐶𝑖 ,
mappings between pixel and three-dimensional point coor-
dinates are captured using camera matrix transformations
𝑀𝑖 for each camera𝐶𝑖 . For a more in-depth understanding
of the employed SfM with MVS approaches, readers are
recommended to read the work shown in [28].

In parallel, using the image inputs from the first step, the
second step leverages a few-shot trained Swin [14] trans-
former model, pretrained with synthetic data to create per-
pixel semantic classes or segmentations. The model train-
ing step considers a class structure based on the ASTM
Uniformat classification of construction objects to detect
partial construction of different construction elements. A
semantic label class 𝐿𝑘 is stored for each pixel 𝑃 𝑗 in cam-
era 𝐶𝑖 , and added to a general dictionary 𝐷 containing
tuples 𝐷 = [𝐶𝑖 , 𝑃 𝑗 , 𝐿𝑘 , 𝑝𝑜𝑖𝑛𝑡𝑥,𝑦,𝑧]. Such a dictionary is
used to create a semantically rich segmented point cloud
based on ASTM Uniformat II classes for each visible ob-
ject. By leveraging camera vectors and orientations, an
orthographic projection 𝑂 is automatically created and
overlayed against corresponding IFC drawings with QTOs
using a three-point aligning process.

Concurrently, during the third step, corresponding
schedules are parsed and classified Uniformat Level 2 &
3 instances using UniformatBridge [7], built on the pre-
trained BERT model. At this stage, for each activity line
item 𝐴𝑐𝑡𝑚, similar ASTM Uniformat classification labels
𝐿𝑘 as assigned, together with location-based constraints
𝐿𝑜𝑐𝑛 based on the schedule text usign PoAT [29]. At this
stage, using the schedule activity relationships, sequential
constraints are extracted for each detected Uniformat clas-
sification (i.e., [𝐹𝑙𝑜𝑜𝑟 > 𝑊𝑎𝑙𝑙 > 𝑊𝑖𝑛𝑑𝑜𝑤𝑠 > 𝐶𝑒𝑖𝑙𝑖𝑛𝑔]).
These extracted sequences provide the logical constraints
in which overlapping detected activity class orthographic
projections from a segmented point cloud.

The fourth step attempts to create a polygon-based com-
pletion coverage to extract current object quantities. For
each polygon 𝑃𝑜𝑙𝑢 from a QTO drawing containing con-
struction class label 𝐿𝑘 , its completeness is evaluated using
the overlapping segmented pixel class from the aligned or-
thographic point cloud projection as a function of the per-
cent complete of an object and its corresponding activity,
as shown in equations 1 and 2, respectively:

%𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑂𝑏 𝑗𝑚 =

𝐷𝑟𝑎𝑤𝑖𝑛𝑔𝑃𝑜𝑙𝑢 ∩ 𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑𝑃𝑜𝑙𝑢

|𝐷𝑟𝑎𝑤𝑖𝑛𝑔𝑃𝑜𝑙𝑢 ,𝐿𝑘
= 𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑𝑃𝑜𝑙𝑢 ,𝐿𝑘

(1)
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Figure 1. The proposed methodology of this work for automating progress monitoring using Images, IFC
Drawings with QTOs, and construction schedules.

%𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐴𝑐𝑡𝑚 = %𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑂𝑏 𝑗𝑚 ∈ 𝐿𝑜𝑐𝑛

|𝐴𝑐𝑡𝑚,𝐿𝑜𝑐𝑛 = 𝐷𝑟𝑎𝑤𝑖𝑛𝑔𝑃𝑜𝑙𝑢 ,𝐿𝑘

(2)

Where %𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑂𝑏 𝑗𝑚 is the estimated percentage
completion of a construction object, 𝐷𝑟𝑎𝑤𝑖𝑛𝑔𝑃𝑜𝑙𝑢 is the
IFC Drawing polygon object, and %𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐴𝑐𝑡𝑚 is the
estimated percentage completion of an activity 𝐴𝑐𝑡𝑚, upon
constraining quantities to a location polygon 𝐿𝑜𝑐𝑛 pro-
vided by the activity classification step, and extracting
locations from the IFC Drawing.

As part of the logical constraint imposed by the extracted
sequence in the second step of this method, quantities of
initial objects in such sequence are corrected to reflect
their completion imposed by constructability constraints
of subsequent dependent objects (i.e., floor slabs quan-
tities are corrected as a function of the detected ceiling
quantities), as defined in the expression of equation 3, and
the rules imposed by equation 4:

𝑆𝑒𝑞 = 𝑂𝑏 𝑗𝑎, 𝑂𝑏 𝑗𝑏, 𝑂𝑏 𝑗𝑐 (3)

%𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑂𝑏 𝑗𝑎 =

100%|%𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑂𝑏 𝑗𝑏 > %𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑂𝑏 𝑗𝑎

(4)

4 Data and Experiment Settings
The experiment of this work evaluates a real-world sce-
nario in the construction of a high-rise hotel building. It

considers the utilization of an IFC drawing with computed
quantities, a construction schedule, and a set of images
encompassing five different ASTM Uniformat II classifi-
cations corresponding to floors, partition walls, windows,
ceilings, and pipe installation.

For the creation of dense reality point clouds, this work
makes use of the OpenSfM library [30] and a set of 120
images corresponding to a room area of the construction
to evaluate, as shown in Figure 2. The available IFC draw-
ings are manually scaled and annotated based on the Uni-
format II object classifications and stored as a rasterized
document, as shown in Figure 3.

Moreover, the detection of construction elements makes
use of a Swin model, pretrained with synthetically created
construction scene images, following the training strate-
gies from work presented in [31]. For visualization pur-
poses, the projected RGB values of the point cloud seman-
tics are set to differ from those from the IFC drawing.

Given the limited visibility of information when com-
paring the orthographic projection of a point cloud against
the rasterized IFC drawing, different elevations are consid-
ered to detect and measure objects properly. Specifically,
three elevation values – each at one-third (1/3) incremen-
tal of the total height – are selected to extract key ortho-
graphic projections from the point cloud to compare and
estimate detected quantities. To account for elements that
may be detected but outside of the designated point cloud
orthographic projection height slice, a sampling threshold
of one-sixth (1/6) in the vertical direction is utilized, as
shown in Figure 4.

To extract schedule sequential information, a pretrained
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Figure 2. Sample view of the point cloud reconstruc-
tion results. As made evident by using photogram-
metry in construction environments, common chal-
lenges include point cloud completion due to ho-
mogeneous surfaces and object occlusions due to
non-construction-related elements. The current re-
constructed elements in this view correspond to wall
aluminum framing, windows, gypsum board on ceil-
ings, and concrete floors.

Figure 3. An a) Issued for Construction (IFC) draw-
ing, along with b) polygon-based annotations for
computing construction object quantities (QTYs).
The scope of the experiment focuses on room areas
marked with a hash pattern.

BERT model following the work proposed in [7] is used.
A total of 1,700 construction activities are parsed and clas-
sified as a function of levels two and three of the ASTM
Uniformat II. Specifically for this experiment, the scope
of activities is focused on activities present in the room
shown in Figure 3, focusing on the scope of structural
and interior work. In addition to such classification, and
to account for the mapping between a visually detected
object and its correct activity line item, location informa-
tion is extracted following the work presented in [29] and
compared against the matched segmented point cloud seg-
ments, whose location information is extracted from the
overlapping annotated IFC drawing. Additionally, Unifor-
mat II sequences are created based on the extracted activity
relationships present in the schedule and stored as separate
recipes.

Lastly, the automatically detected progress quantities

are evaluated against ground-truth actual progress quanti-
ties, estimated from the project visual documentation and
available daily construction reports. The accuracy of the
detected progress quantities using the proposed method
is evaluated using the Mean Average Percentage Error
(MAPE) and reported against each schedule line item.

5 Result and Discussion
The following section focuses on the results pertaining to
the computation of actual quantities based on the compar-
ison between actual and planned orthographic projections,
the mapping accuracy against schedule line items via us-
ing Uniformat and Location information, and the ability to
correct detected quantities as a function of sequential in-
formation from a schedule’s Uniformat classifications and
relationships.

As evident in Figure 5, the sparsity of the mesh in a
point cloud may create inaccurate estimates of progress
values. Table 1 showcases how each detection is assigned
to the corresponding activity Uniformat code and location,
the results of comparing the estimated quantities based on
comparing a segmented mesh against the IFC drawing,
and the corrected completion estimates for each entry.

This case study shows the success of utilizing the ASTM
Uniformat II as the bridge to align schedules against de-
tected vision information. The contrast provided between
the results in Figure 5 and Table 1 shows how elements
with large pixel coverage (such as walls, floors, and ceil-
ings) contain more pixel-level information that allows for
dense point cloud reconstruction, improved feature seg-
mentation, and better heuristically-controlled calculations
due to corresponding to middle-sequence tasks, which can
make use of a predecessor and successor thresholds for
progress-based dependencies against other completed or
to-be-completed elements.

In contrast, having significant occlusions denotes how
the precision of the reality capture is less significant than
the strategies utilized for correcting or assuming com-
pleted quantities. Such a case becomes especially chal-
lenging for slender objects such as MEP components,
thus explaining the higher degrees of error in the exper-
iment. This is mainly attributed to the lower number of
pixels available for reconstructions and feature segmen-
tation. With fewer pixels, a reconstruction engine may
produce non-dense point clouds, decreasing the degree of
label projection against the point cloud. Moreover, fewer
pixels decrease the success rate of correctly classifying
pixel features against predetermined classes. Lastly, due
to MEP components being at the very last step of a se-
quence, the rule-based checking of the quantities becomes
less impactful compared to the middle steps of a sequence.

Nevertheless, occlusions are a phenomenon that would
similarly impact LiDAR-based scanning strategies. Still,
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Figure 4. Pixel-based mapped against the orthographic representation of a point cloud at three different heights,
where case a) shows the bottom projection, b) shows the middle height projection, and c) the top projection.
These projections are scaled to the mesh representation of the resulting point cloud.

Figure 5. Initial orthographic overlay between the segmented point cloud and an IFC drawing with annotated
quantities at three different heights. Different coverage is observed for each evaluated height, showcasing the
need for heuristics based on Uniformat II sequences.

Table 1. Reported quantities for each construction activity. Classification results are based on the Uniformat
Level 3, and Location information is automatically extracted from the Activity Name. Actual quantities (QTY)
correspond to the actual quantity takeoff for completed elements from the IFC drawing (ground truth), while
the Detected QTY comes from the area completeness ratio of the segmentation overlay against IFC drawings.
The Corrected QTY is determined based on the extracted sequence from the classified activities and their
relationships, and is compared against the ground truth to compute their mean average percentage error (MAPE).

Activity Name Uniformat Code Location Actual QTY Percentage Coverage (%) Detected QTY Corrected QTY MAPE (%)
5th Floor - Wall Covering C3010 Level 5 0 SQFT 0 0 0 0
5th Floor - Install Flooring C3020 Level 5 182.6 SQFT 45.8 83.6 SQFT 179.6 SQFT 1.6
N-E 5th Floor - Hang Gyp at Ceiling - NE C3030 Level 5 Zone NE 191.5 SQFT 93.8 179.6 SQFT 179.6 SQFT 6.2
5th Floor - Frame Walls C1010 Level 5 579.4 SQFT 100 579.4 SQFT 579.4 SQFT 0
Exterior Skin - Window Installation Complete - 5th Floor B2020 Level 5 1 EA 100 1 EA 1 EA 0
5th Floor - Plumbing Trim - Shower D2010 Level 5 0 LF 0 0 0 0
5th Floor - Start Final MEP Wall/Ceiling Rough-In D3050 Level 5 10.6 LF 4.6 0.5 LF 0.5 LF 95.3

using language models to extract sequential information
encoded through the ASTM Uniformat II allows for the
correction of certain construction elements that poor point
cloud reconstructions may impact.

6 Conclusion

This work presented an application of automated progress
monitoring, combining vision and language outputs only
(i.e., without the use of BIM), and a practical way for-
ward to creating automated progress monitoring appli-
cations, leveraging modern deep learning and computer
vision algorithms. The proposed method utilizes novel
transformer-based architectures such as Swin and BERT,
each trained to classify detected construction objects based

on the ASTM Uniformat II of Construction Objects from
reality capture images and construction schedules. Addi-
tionally, the proposed method introduces an approach and
heuristic to calculating the actual progress of construc-
tion. This approach is done by leveraging sequential and
location-based information extracted from classified ac-
tivity line items. Additionally, it imposes constraints on
computed quantities from comparing per-pixel construc-
tion semantics projected on orthographic point cloud rep-
resentations against IFC drawings with annotated QTOs.

The utilization of schedule-based-heuristics and se-
quential constraints addresses two types of limitations
from the utilization of photogrammetry for the detec-
tion of progress: 1) the miscalculation of percent com-
pleted due to occluded construction objects in typical
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scenes, and 2) the incomplete computed progress from
low-density reconstructions showcasing incomplete ob-
jects. This method is validated by a real-world case study,
which computes progress quantities for a high-rise ho-
tel as a function of provided reality captures, IFC draw-
ing QTOs, and construction schedules. In this study,
the detected pixel segmentations are projected against
point cloud reconstructions and compared against draw-
ing QTOs to compute actual progress. Such progress is
corrected based on the automatically extracted schedule
sequences and locations.

Given the current state of BIM standardization across
the industry, the applicability of this method in real-world
scenarios may fill the gap that low LOD in BIM mod-
els create by bringing an alternative to progress monitor-
ing based on globalized practices when working with IFC
drawings and QTOs. Future steps in this line of work will
evaluate the validity of the established heuristics for other
ASTM Construction Object categories.
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