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Abstract –  

This study introduces an innovative method for 

enhancing digital modeling accuracy in construction 

site monitoring by integrating UAV imaging with 

advanced machine learning and computer vision 

algorithms. It focuses on removing temporary 

elements like construction machinery from images. 

The method involves two steps: first, using deep 

learning algorithms, for instance, segmentation to 

detect and segment construction machinery from 

UAV images trained on the Aerial Image Dataset for 

Construction (AIDCON); second, employing image 

inpainting techniques, utilizing the Places2 dataset 

and the LaMa algorithm, to fill in the areas left vacant 

by the removed machinery. Demonstrated on a 

parking garage construction site in Ankara, Türkiye, 

the results show high accuracy in machinery 

segmentation and effective image inpainting, as 

evidenced by metrics like Normalized Root Mean 

Square Error (NRMSE), Peak Signal-to-Noise Ratio 

(PSNR) and Structural Similarity Index (SSIM). This 

approach contributes significantly to the field of 

construction site monitoring by refining digital 

models and shows potential for broader application in 

the industry. Future research directions include 

developing a specialized image inpainting dataset for 

construction scenarios and extending the 

methodology to encompass more types of temporary 

site elements, paving the way for more efficient and 

accurate project management in construction. 
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1 Introduction 

In the construction industry, digital modeling of job 

sites is essential for efficient project management and 

execution. Automated monitoring systems, frequently 

incorporating advanced technologies such as UAVs, 

LiDAR, and machine learning, require accurate data to 

monitor and compare ongoing construction activities 

with planned ones. These systems also play a crucial role 

by enabling the detection of deviations or potential delays. 

Such systems offer a proactive approach to project 

management, allowing project managers to address 

issues promptly and keep the project on track. 

In practice, challenges arise due to temporary objects 

such as machinery, equipment, and materials on the 

construction site. Such objects can create occlusion in the 

digital model, obscuring the actual progress of the project. 

Their presence in the digital representation can lead to 

inaccuracies in assessing the extent of the completed 

structure, potentially resulting in misguided decisions 

and inefficiencies. Therefore, they need to be extracted 

from the digital models in an automated manner. 

Researchers in the field of UAV-based 

photogrammetry pointed out significant challenges in 

accurate mapping and calculations due to moving objects 

such as cars, construction equipment, and temporary 

facilities [1,2]. These obstacles notably affect 

computations, leading to the erroneous generation of 

height differential maps. Their findings underline the 

necessity for enhanced methods to overcome the 

inaccuracies introduced by non-terrain objects. 

Automated monitoring systems can gain a clearer and 

more accurate view of the construction progress by 

eliminating these objects from the digital model. This 

practice is crucial as it allows for a more precise 

comparison between the current site condition and the 

project plan. It ensures that the progress tracking is 

focused solely on the permanent structural developments 

rather than being skewed by temporary site elements. 

This leads to enhanced overall efficiency and 

productivity of the construction project, ensuring it is 

completed on time and within budget. 

Building on the critical need for accurate digital site 

representation, particularly in light of the challenges 

posed by temporary objects, it becomes clear that vision-

based technological solutions are essential. Image 

segmentation and image inpainting emerge as crucial 

techniques in this context. Image segmentation involves 
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dividing a digital image into different segments to 

distinguish between various elements, such as separating 

temporary objects like machinery and equipment from 

permanent structural components [3]. On the other hand, 

image inpainting is reconstructing missing or obscured 

parts of images [4]. This technique becomes particularly 

valuable in construction for filling areas from which 

temporary objects have been removed, thereby providing 

a more precise and accurate representation of the actual 

site conditions. 

This study proposes a method that combines image 

segmentation and inpainting to produce well-represented 

digital models of construction sites such as point clouds. 

Initially, image segmentation is utilized to identify and 

isolate temporary objects within the site images. 

Following their removal, image inpainting is applied to 

fill in the resultant gaps, effectively recreating the 

obscured parts of the construction site. The inpainted 

images serve as an accurate base for the 3D 

reconstruction process. By utilizing refined images, point 

clouds can be generated to accurately reflect the actual 

state of the construction site, free from distortions caused 

by temporary objects. This approach significantly 

benefits the automated monitoring systems, providing 

them with a more reliable data source for tracking the 

project's progress. It enables precise tracking and 

assessment of construction activities, leading to better 

resource allocation, decision-making, and, ultimately, 

more efficient and timely completion of construction 

projects. 

2 Background 

Eliminating occlusion is notably challenging due to 

the variable geometry of construction surfaces. Various 

traditional terrain filtering methods have been developed 

for digital terrain generation, which can also be applied 

to point clouds of construction. They can be classified 

based on geometric principles: slope-based, morphology-

based, and surface-based methods. 

Slope-based approaches [5,6] focus on evaluating the 

slope in a localized area and categorizing points as 

ground and non-ground based on a predefined slope 

threshold. Morphology-based methods [7,8] employ 

mathematical morphology techniques to effectively 

identify and remove points that do not correspond to 

ground surfaces. Surface-based methods take a different 

approach by gradually selecting points from raw point 

clouds to construct a ground surface model. This is 

commonly achieved through the Triangulated Irregular 

Network (TIN) [9]. Other notable research methods in 

recent years are the Simple Morphological Filter (SMRF) 

[10] and the Cloth Simulation Filter (CSF) [11]. 

While these algorithms have proven effective in 

various scenarios, they also share certain limitations. 

Their successful application requires users to thoroughly 

understand the algorithms and the specific characteristics 

of the sampled regions. This necessity for specialized 

knowledge makes these methods more challenging to 

apply. Moreover, in cases where the sampled region is 

extensive and features complex terrain relief, the 

parameters chosen for one site may not be applicable 

across the entire area without leading to errors in 

classification. Numerous classical machine learning 

algorithms have been introduced to enhance the 

robustness and level of automation in terrain generation. 

These algorithms aim to provide more adaptable 

solutions for terrain filtering in varied and complex 

construction environments. 

In computer vision, deep learning has risen 

significantly in recent years. Deep learning techniques in 

image inpainting are adept at extracting semantic details 

from images, making more accurate predictions about 

missing content. Techniques such as Convolutional 

Neural Networks (CNNs) and Generative Adversarial 

Networks (GANs) have proven highly effective in 

capturing nuanced image data. Many studies have 

successfully employed CNNs to refine image inpainting 

processes, leading to notable progress [12, 13]. Among 

the notable variations of CNNs are Fully Convolutional 

Networks (FCN) [14] and U-Nets [15]. Additionally, the 

introduction of GANs has been influential, as they are 

particularly well-suited for image inpainting tasks due to 

their strong data generation capabilities [16]. 

To support these advancements, researchers have 

developed a variety of image inpainting datasets and 

applications, each specifically designed for different 

types of images, scenarios, or inpainting challenges. Key 

datasets such as ImageNet [17], Places2 [18], Paris 

StreetView [19], and CelebA-HQ [20] have been 

instrumental in the progress and assessment of image 

inpainting algorithms. These datasets have provided the 

necessary diversity and complexity for refining and 

evaluating inpainting techniques. 

Advances in deep learning-based inpainting methods 

have been significant and widespread, impacting areas 

including urban modeling, shadow manipulation, 

construction management, and infrastructure planning. 

For instance, Kapoor et al. [21] utilized these techniques 

to create Nostalgin, a tool designed for reconstructing 3D 

city models from historical photographs by filling in 

missing data, thus offering a reasonable representation of 

the past. Similarly, Wei et al.  [22] developed a dual-stage 

GAN method specifically for shadow inpainting and 

removal, notably improving color retention in shaded 

areas. In the realm of construction, Bang et al. [23] 

applied GANs for enhanced detection and reconstruction 

of construction resources in UAV imagery. Further, 

Angah and Chen [24] proposed a context inpainting 

method to eliminate obstructions in construction site 
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images, facilitating the creation of Building Information 

Models. W. J. Kim et al. [2] enhanced the detection of 

moving objects by improving background details at a 

pixel level. 

J. Park et al. [25] also introduced a technique to 

generate vehicle-free ortho-mosaics from UAV images, 

thereby improving transportation infrastructure 

management. These diverse applications highlight the 

adaptability and efficiency of inpainting in tackling 

complex challenges across various fields. In this study, 

the objective is to utilize deep learning-based image 

inpainting techniques to identify and remove 

construction machinery from images. This approach aims 

to represent the construction field accurately, which is 

crucial for the subsequent steps in 3D reconstruction.  

3 Method 

The study introduces a comprehensive method for 

enhancing the accuracy of digital models in construction 

sites by removing temporary elements, such as 

construction machinery, from UAV-captured images. 

This methodology unfolds the parts mainly: 

segmentation of construction machinery through instance 

segmentation, followed by applying image inpainting 

techniques to refill the absence of these objects from the 

images (Figure 1). 

 

 

Figure 1. Flowchart of the method 

The first stage aims to detect and segment 

prominent construction machines like excavators, 

bulldozers, and trucks from the aerial images. Deep 

learning algorithms, tailored explicitly for instance 

segmentation, are deployed for this purpose. Instance 

segmentation offers a more detailed mapping of an image 

compared to traditional methods. It partitions an image 

into regions or pixels corresponding to individual objects, 

producing an exact "mask" for each object. This 

heightened level of detail in segmentation is essential in 

accurately identifying and subsequently removing 

objects from images.  

The deep learning model trained by the AIDCON - 

Aerial Image Dataset for Construction [26] was used to 

facilitate this process. The AIDCON dataset includes 

2155 images captured by UAVs. It provides bird's-eye 

views of various construction environments annotated at 

the pixel level, featuring nine categories of construction 

machinery like dump trucks, excavators, loaders, and 

dozers. This model smoothly detects and segments 

construction machinery in the UAV imagery. 

Subsequently, the identified objects are converted into 

binary image masks, which are used in the image 

inpainting process to eliminate these objects from the 

images.  

The second stage involves the application of image 

inpainting methods. It utilizes the masks generated in the 

previous stage. The inpainting algorithm effectively fills 

the pixels previously occupied by the machinery with 

pixels suitable for the construction site environment. A 

pre-trained model on the Places2 dataset [18], renowned 

for its vast collection of diverse images across numerous 

unique scene categories, is employed. This dataset 

provides a robust and varied training environment for the 

model, significantly improving its capability to detect 

and remove construction machinery in many scenarios. 

After evaluating various inpainting techniques 

mentioned in the literature, the Large Mask Inpainting 

(LaMa) algorithm [27] is used. This algorithm is 

particularly adept at handling large missing regions, 

complex geometric structures, and high-resolution 

images, making it an ideal choice for the study. 

Combining the pre-trained Places2 dataset and the LaMa 

algorithm allows us to achieve robust and visually 

consistent inpainting results. 

By merging the strengths of instance segmentation 

and advanced image inpainting techniques, the method is 

designed to produce digital models that accurately reflect 

the actual state of construction sites, devoid of distortions 

caused by temporary construction machinery. Building 

on the success of removing temporary construction 

machinery from UAV images, the study advances into 

the phase of 3D reconstruction of the current construction 

sites. Structure from Motion (SfM) [28] and Multi-View 

Stereo (MVS) [29] techniques are employed to create 

detailed point clouds. This integration of advanced image 

processing with 3D reconstruction technologies ensures 

that the final digital models accurately represent the 

actual state of the construction sites, significantly 

enhancing project management and planning capabilities. 

4 Results 

This section outlines the experiments conducted to 

assess the effectiveness of the proposed system in 

UAV Imaging

Image 
Segmentation

Image 
Inpainting

3D 
Reconstruction
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construction environments. It offers a detailed 

examination of how image segmentation, inpainting, and 

3D reconstruction techniques can be applied to track 

construction progress in real-world scenarios. 

4.1 Study Area 

The field study was conducted at a job site in Ankara, 

Türkiye, where a parking garage covering more than 

9,000 square meters is being constructed beneath a 

courtyard. This site was selected for its suitability for 

progress monitoring due to the variety of machinery 

present. 

4.2 Data Collection 

This study conducted UAV imaging during two site 

visits, T1 and T2, offering a detailed overview of the 

construction progress. Aerial views of the construction 

site are illustrated in Figure 2 and Figure 3. To enhance 

the quality of the 3D point cloud and ensure accurate 

positioning in the 3D reconstruction process, Ground 

Control Points (GCPs) were measured around the 

perimeter of the construction site.  

 

Figure 2. Aerial View of Construction Site at T1 

Site Visit 

 

The DJI Mavic Pro drone was chosen for the imaging 

process due to its several beneficial features. Its compact 

size, prolonged flight capability, and precise positioning 

make it well-suited for such tasks. The drone flights were 

maintained at a consistent altitude of 40 meters, which 

was crucial for ensuring data uniformity and enabling a 

comparison between different flights. The imaging 

strategy involved maintaining an 80% overlap for both 

front and side images, greatly enhancing the data quality 

and enabling accurate data analysis. This standardized 

approach to data collection was crucial in facilitating 

reliable comparisons and drawing meaningful 

conclusions from the data gathered. 

 

Figure 3. Aerial View of Construction Site at T2 

Site Visit 

4.3 Data Processing 

During the T1 and T2 timeframes, the construction 

site featured a variety of equipment, including dump 

trucks, excavators, backhoe loaders, and cars. 

Additionally, a category termed "other" encompassed 

drilling machines, anchor installation machines, and 

concrete mixers. The deep learning model previously 

mentioned was employed to segment construction 

machinery in both T1 and T2 datasets. The model's 

performance, measured by the mean Average Precision 

(mAP) COCO Metrics [30], is detailed for both datasets 

in Table 1. Additionally, it presents a breakdown of the 

Average Precision (AP) results, categorized by each type 

of equipment. AP of the backhoe loader was not present, 

as it was not visible in the images during the T2 

timeframe.  

Table 1. Segmentation Results 

Dataset mAP mAP50 mAP75 

T1 67.6 87.3 82.3 

T2 64.5 87.2 78.7 

Table 2. Classwise AP Results (IoU=50%) (D.T: Dump 

Truck, Exc: Excavator, B.L.: Backhoe Loader) 

Data D.T. Exc. B.L. Car Other 

T1 97.8 98.9 96.3 97.5 45.9 

T2 92.8 96.4 - 96.5 63.1 

The outcomes of the segmentation stage lay the 

groundwork for advancing to the subsequent phases, 

which involve the removal of construction machinery 

and the creation of 3D surface models. Following the 

segmentation stage, image masks were created (Figure 4). 

These masks accurately define the boundaries of each 

piece of machinery detected in the images, preparing 

them for the next phase of the process. The LaMa 

inpainting algorithm, which has been trained using the 

Places2 dataset, was then employed on these images.  
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The effectiveness of the inpainting process was 

assessed using several established image comparison 

metrics. These include the Normalized Root Mean 

Square Error (NRMSE) [31], Peak Signal-to-Noise Ratio 

(PSNR) [31], and Structural Similarity Index (SSIM) 

[32]. The results of these evaluations are detailed in Table 

3.  

Table 3. Inpainting Results 

Dataset NRMSE PSNR SSIM 

T1 0.019 37.628 0.900 

T2 0.018 32.595 0.901 

  
(a) Segmentation of Machinery from Images 

  
(b) Creation of Image Masks 

  
(c) Inpainting image masks 

Figure 4. Eliminating Occlusion from the Images 
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Table 4. 3D Reconstruction Results 

 T1 T2 

Processed Images 230 of 230 230 of 230 

Sparse P. Cloud 314,299  313,065  

Dense P. Cloud 32,491,933  32,012,587  

GSD 1.3 cm 1.3 cm 

GCP Error 16.7 cm 14.4 cm 

Once these construction machines were digitally 

eliminated from the images, the next step involved 

converting the 2D images into a 3D point cloud. This 

transformation required using the SfM-MVS technique 

to achieve a three-dimensional site representation. 

SiteEye, a robust photogrammetry software [33], was 

chosen to manage UAV photogrammetry in this study. 

SiteEye was selected from a range of available software 

known for its comprehensive capabilities in 

photogrammetry. The results of the photogrammetric 

process using SiteEye are visualized in Figure 5 and 

summarized in  

Table 4. The table indicates that all 230 images from each 

image set were processed successfully, demonstrating the 

effectiveness of this approach in creating accurate 3D 

models of the construction site. 

5 Discussion 

The current research introduces a novel approach for 

monitoring construction site progress, fusing UAV 

imaging with advanced machine learning and computer 

vision algorithms. This innovative method addresses 

several limitations in traditional techniques for 

generating point clouds at construction sites. The 

discussion will highlight the significant contributions of 

the study, the challenges faced, and potential avenues for 

future research.  

• Performance of the Construction Machine 

Segmentation Model: A pivotal success of the 

proposed approach is the performance of the deep 

learning model in segmenting construction 

machinery. This model exhibited reasonable 

accuracy, especially for frequently encountered 

construction vehicles like dump trucks, excavators, 

backhoe loaders, and cars. The AP scores, often 

surpassing 90%, attest to the efficacy of deep 

learning algorithms in machinery segmentation 

within construction site imagery. This achievement 

is vital to integrating machine learning technologies 

into construction site monitoring. It is essential to 

acknowledge that flight parameters such as height, 

overlap, and camera angle substantially impact the 

resolution, coverage, and geometric accuracy of 

UAV images. These factors significantly influence 

the detectability of construction machinery and the 

quality of the areas inpainted subsequently. For 

example, flying at a higher altitude may lead to low-

resolution images, complicating fine-grained 

segmentation tasks. In the study, a flight altitude of 

40 meters resulted in a ground sampling distance of 

1.3 cm, sufficiently identifying the construction 

machinery targeted in the images. 

• Advancements in the Automation of 

Construction Machine Removal: The study 

marked a significant stride in the automated 

removal of construction machinery using image 

inpainting techniques. The encouraging results 

from the evaluation metrics—NRMSE, PSNR, and 

SSIM—underscore this success. For instance, 

dataset T1 showed an NRMSE of just 0.019 and an 

SSIM score of 0.900, indicating good structural 

similarity in the inpainting process. These results 

were closely mirrored in dataset T2. These metrics 

validate the effective implementation of image 

inpainting algorithms for removing construction 

machinery, thus aiding in the precise generation of 

digital terrain models. 

• Interoperability and Versatility of the Method: 

A noteworthy aspect of the method is its 

compatibility with various photogrammetry 

software. The construction machine-removed 

images are designed to be georeferenced and 

processed independently, making the output of the 

proposed method adaptable for integration with 

different third-party photogrammetry applications. 

This flexibility enhances the method's potential for 

widespread adoption, particularly in automated 

progress monitoring for construction sites. 

• Potential for Future Research - Specialized 

Image Inpainting Dataset and Removal of More 

Types of Site Occlusion:  Looking ahead, 

developing a dedicated image inpainting dataset 

tailored to scenarios commonly encountered in 

automated construction site monitoring presents a 

research opportunity. Such a specialized dataset 

could enhance the performance of image inpainting 

algorithms, a critical component of the proposed 

method. Improved algorithms will further refine 

automated progress monitoring, making it more 

efficient and reliable. Future research also offers the 

potential to expand current methodologies by 

removing various site occlusion types. While the 

current focus is on construction machinery, 

extending this to elements like workers, unused 

materials, and temporary structures could greatly 

enhance site management. This would improve the 

digital representation of construction sites, 

providing a clearer view of progress and conditions, 

thereby facilitating more efficient and accurate 
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project management. Developing comprehensive 

models and datasets is crucial to advancing 

automated monitoring in the construction industry. 

6 Conclusions and Future Work 

This study introduces a method combining UAV 

imaging, machine learning, and computer vision 

algorithms to improve the digital modeling of 

construction sites. The focus was on removing temporary 

elements like construction machinery from images to 

enhance the accuracy of these models. The approach was 

tested in a real-world setting on a construction site, 

demonstrating its practical application. Key findings 

include the effective use of deep learning for segmenting 

construction machinery, resulting in high AP scores. This 

success illustrates the potential of deep learning in 

construction site monitoring. Additionally, image 

inpainting proved valuable in creating accurate digital 

representations of the site after removing temporary 

objects. 

The method's compatibility with various 

photogrammetry software suggests its potential for 

broader application in the construction industry. Future 

research directions could involve developing a 

specialized image inpainting dataset for construction 

scenarios and extending the methodology to include 

more types of temporary site elements. In conclusion, this 

research contributes to the field of construction site 

monitoring by offering an innovative method for 

improving the precision of digital models, with 

implications for more efficient and accurate project 

management in the construction industry. 
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(a) 3D Reconstruction with Original Images 

  
(b) 3D Reconstruction with Inpainted Images 

Figure 5. Resultant Point Clouds 
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