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Abstract  
 Mobile factories promise an increased project 

efficiency with on-demand production and Just-in-
Time delivery of prefabricated elements. However, 
traditional scheduling methods predominantly focus 
on either factory or site and neglect the factory 
mobility, often leading to suboptimal 
synchronization. To address this gap, this paper 
introduces a novel reinforcement learning (RL)-based 
model for optimizing the operational policy of mobile 
factories in infrastructure projects. The developed 
model simultaneously schedules on-site and off-site 
operations, effectively integrating the performance 
metrics at the project level. Utilizing RL, the factory's 
production management system continuously learns 
and adjusts in response to real-time project 
developments, ensuring optimal decision-making 
regarding scheduling and resource allocation.  
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1 Introduction 

1.1 Mobile Factories for Infrastructure 
Projects 

The evolution of on-site and near-site prefabrication 
factories in construction and architecture is marked by 
notable milestones. Early 20th-century pioneers like 
Walter Gropius, Martin Wagner, and Adolf Meyer 
introduced systems such as the “Occident System” and 
the “Frankfurt Assembly Method,” which emphasized 
standardization [1]. The latter part of the century 
witnessed unique projects, including Moshe Safdie's 
Habitat ‘67 [2] in Montreal and Thomas Herzog's EXPO 
2000 timber roof in Hannover, highlighting local 

production for specialized architecture [3]. Additionally, 
SKANSKA AB’s “Flying Factories” [4] and LiWood’s 
“Field Factories” [5] for near-site modular timber 
prefabrication represent systematic attempts to bring 
prefabrication closer to construction sites, focusing on 
flexibility through low levels of automation. 

More recent research has shifted focus towards 
enhancing the mobility of mobile factories. Alix et al. [6] 
introduced a reconfigurable manufacturing system 
designed for frequent relocations, adept at 
accommodating fluctuating demand. Following this, 
Wagner et al. [7] unveiled a transportable and adaptable 
timber construction platform, specifically for carpentry. 
This innovation was validated through the construction 
of an intricate wooden pavilion, demonstrating its 
potential to elevate both the quality and efficiency of 
carpentry work. 

Benefits of mobile factories include efficient 
manufacturing and pre-assembly operations near the 
building site, safer and cleaner working environments, 
and reduction in the number of transport kilometers 
between the factory and the building site [8]. Particularly, 
this concept of a mobile factory is suitable for situations 
with long distances and high logistics costs like the 
fabrication of components on the construction site. 

Despite the benefits of mobile factories, existing 
research underscores the necessity for broader industrial 
testing across various domains, as noted by Alix et al [6]. 
Specifically, the application of mobile factories in large 
infrastructure projects like rail and road construction 
remains limited. This gap is noteworthy given the 
alignment between the intrinsic benefits of mobile 
factories and the demands of infrastructure projects. 
Therefore, it is crucial to urgently develop operational 
policies and decision support systems for scheduling 
mobile factories in infrastructure construction. 
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1.2 Integrated Project Scheduling  
Project scheduling is a crucial aspect of project 

management, especially in dynamic and complex 
environments like factory production and site 
construction. However, these two areas are typically 
addressed separately [9]. This separation overlooks the 
potential efficiencies that could be realized through an 
integrated scheduling approach. In the realm of 
industrialized construction, this integration becomes 
increasingly important. Industrialized construction 
requires a more streamlined and coherent workflow, 
ensuring that the prefabrication process in factories 
aligns precisely with the timelines and demands of site 
construction, thereby optimizing resource utilization and 
reducing project delays. 

Most researchers in this field have adopted a strategy 
of integrating site scheduling with storage, delivery, and 
other logistics processes. For example, Ahn et al. [9] 
streamline the synchronization of factory output with site 
demands by optimizing truck-dispatching schedules, and 
enhancing resource utilization and project timelines. 
Wang and Hu [10] integrate site scheduling into 
production scheduling by adding element storing and 
transportation processes to the traditional production 
model. This modification allows for simultaneous 
storage of different elements in the stockyard post-
production, with the timing of the storing and 
transportation processes being closely aligned with site 
requirements and schedules. However, both works do not 
consider factory mobility, which is essential for 
infrastructure projects, where the factory is transportable 
in alignment with the project progression. 

To address the identified limitations in current 
research on mobile factories, this paper proposes an 
innovative approach using a reinforcement learning-
based model to optimize operational policies in 
infrastructure projects. Unlike traditional project 
scheduling methods, which typically segregate factory 
production from site construction, our approach focuses 
on integrating these two critical components. 
Consequently, this approach not only promises improved 
project efficiency but also marks a significant step in 
adaptive project management. Building upon this 
foundation, the following section reviews existing 
research in RL-based scheduling methodologies, setting 
the stage for a deeper understanding of the approach’s 
context and significance. 

2 Literature Review 
Reinforcement learning (RL) has emerged as a 

powerful tool in this domain, offering adaptive and 
efficient solutions. The current literature on RL in project 
scheduling demonstrates significant advancements in site 
and factory production scheduling.  

2.1 Site Scheduling 
The application of RL in site scheduling is 

characterized by a variety of approaches aimed at 
addressing the dynamic and complex nature of 
construction environments. Kedir et al. [11] and Lee et al. 
[12] showcase how RL can be used to simulate and adapt 
to changing conditions on construction sites. The hybrid 
reinforcement learning–graph embedding network model 
proposed in [11] exemplifies an innovative approach to 
simulating complex construction planning environments. 
It shows the potential of RL in reducing computational 
burdens while establishing effective activity sequences 
and work breakdown structures. Similarly, [12] applies a 
digital twin-driven RL method for adaptive task 
allocation, indicating RL's capability to enhance real-
time decision-making and efficiency in dynamic 
construction environments. This emphasis on 
adaptability and prompt responsiveness is similarly 
reflected in [13], which presents a novel method for 
generating Look-Ahead Schedules using RL. This 
method addresses the challenges of manual planning by 
offering a faster, more efficient approach to scheduling 
construction site activities. 

2.2 Factory Production Scheduling 
In the realm of factory production scheduling, RL is 

utilized to address the challenges of variability and the 
need for adaptability in manufacturing processes. Several 
studies highlight various aspects of how RL can improve 
efficiency and adaptability in factory settings [14–17]. 
Du and Li focus on automated assembly planning for 
robot-based construction, employing Deep 
Reinforcement Learning (DRL) in a re-configurable 
simulator to enhance assembly planning processes [14]. 
This approach aligns with [15] and [16], which also 
explore the dynamic nature of factory environments and 
how RL can be used to respond to changes in orders and 
resources. The comprehensive review in [17] of RL 
applications in production planning and control further 
underscores the versatility of RL in managing diverse 
aspects of manufacturing, including production 
scheduling, capacity planning, and inventory 
management. 

2.3 Point of departure 
While the reviewed literature on RL in project 

scheduling offers significant insights, it reveals a notable 
limitation: the lack of integration between site scheduling 
and factory production planning. To enhance overall 
operational efficiency and achieve the promised benefits 
of on-demand production and Just-in-time delivery, it is 
crucial to achieve a seamless integration of mobile 
factories and construction sites. By integrating these two 
components, RL can drive the evolution of project 
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management towards more streamlined, efficient, and 
sustainable practices.  

3 Methodology 
The research methodology followed in this research is 
centered around the development and validation of a RL 
algorithm. RL is a branch of machine learning that draws 
inspiration from the natural learning process. In RL, the 
behavior of an entity, known as an agent, is shaped by the 
outcomes of its previous actions. Positive outcomes 
reinforce certain behaviors, lending greater importance to 
those actions and the decisions leading up to them. RL 
builds upon the foundations of Markov Decision 
Processes [18] and stands apart from supervised learning 
in that it does not rely on labeled input-output pairs for 
learning [19]. A RL model formally comprises: 
● A discrete set of states, S; 
● A discrete set of possible actions for the 

agent, A; and 
● A set of scalar rewards. 

In this framework (shown in Figure 1), an agent selects 
actions based on the rewards previously received in 
similar states. The ultimate objective is to devise a policy 
π that maps states to actions in a way that maximizes the 
overall reward. 

 
Figure 1. Reinforcement Learning Feedback Loop 

The algorithm proposed in this research work aims to 
optimize operational policies in infrastructure projects 
that employ mobile factories for construction supply. The 
methodology uniquely combines logistical mobility with 
the complexities of production and assembly processes 
within the context of a mobile factory. This presents a 
novel and challenging environment for the application 
and exploration of RL techniques. In the following 
subsection, we will explain how the RL problem was 
formulated. These include, definition of environment, 
agent, agent’s action space, reward and penalty. 
 

3.1 Environment  
The simulation divides a construction project into 

sections of uniform length, with on-site assembly of 
building components produced by the mobile factory. 
The assembly unfolds in a linear fashion, advancing from 
section to section until the project's completion is 

achieved. 

3.2 Agent  
The agent operates as the mobile factory, 

commencing at the first section and advancing toward the 
terminal section. It continuously tracks its position 
relative to the project and the quantities of both produced 
and assembled components. 

3.3 Actions 
The agent's operational choices are determined on a 

daily basis, introducing an element of strategic timing to 
the simulation. The agent has a repertoire of actions that 
directly influence the environmental state:  

● Production: Engaging in this action, the factory 
commits to the fabrication of building elements at 
a set rate. While in production mode, the factory's 
status is updated to reflect the new production 
count, and its location remains unchanged.  

● Movement: Opting to move prompts the factory 
to transition to the next section. This phase is 
characterized by a cessation of production, which 
realistically simulates operational downtime 
during relocation.  

● Idle: By choosing to idle, the factory does not 
produce or move. This inaction provides an 
opportunity for strategic timing, potentially 
waiting for more favorable conditions or to better 
align with other segments of the project. 

3.4 Reward 
The reward function in this project environment is 

designed to incentivize optimal scheduling and resource 
allocation. It includes the following components: 

● Project Completion Reward: This substantial 
reward is granted upon the successful completion 
of the entire construction project, i.e., when all 
sections have met their assembly requirements 
and the project has reached its final stage. This 
reward reflects the ultimate goal of project 
completion. 

● Milestone Reward: Awarded each time the 
project successfully meets the assembly 
requirements for a current section and progresses 
to the next. This reward is a key driver for phase-
wise project execution, encouraging the timely 
accomplishment of individual project segments. 
The milestone bonus not only acknowledges the 
completion of specific sections but also promotes 
a steady pace, ensuring that the project advances 
methodically from one stage to the next without 
unnecessary delays. 
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3.5 Penalty 
The penalty function encapsulates various 

operational costs and risks, promoting efficient and 
strategic planning:  

● Duration Cost: Emphasizes project time 
management, where shorter durations align with 
industry objectives. This cost accrues daily and 
escalates with extended project timelines. 

● Factory Running Cost: Emphasizes the 
operational expenses associated with the daily 
functioning of the factory. This cost accrues 
continuously, reflecting the resource utilization 
and maintenance required to keep the factory 
operational. 

● Factory Movement Cost: Underscores the 
expenditures associated with relocating the 
factory within the construction project area. This 
cost is incurred when the factory needs to be 
moved to a different location within the project 
site, often to align with the construction progress. 

● Shipment Cost: Reflects the logistical 
complexity of material transportation from the 
factory to the construction site. This cost is 
quantified by the distance to the current project 
section and is enhanced by a predetermined factor, 
underscoring the value of logistical efficiency.  

● Inventory Cost: Signals potential inventory 
management inefficiencies. This cost is activated 
when production outperforms assembly. The 
incurred cost, proportional to the imbalance and 
multiplied by a coefficient, advocates for a 
balance between production and assembly.  

● Underproduction Cost: Underproduction Cost 
addresses the potential consequences of 
producing fewer components than required for the 
construction project. To mitigate this risk, 
additional resources may be needed, such as 
sourcing components from external suppliers or 
resorting to on-site production, often under urgent 
circumstances. 

The penalty function complements the reward function 
by creating a balanced and comprehensive system of 
disincentives and incentives. This system encourages 
behaviors that are conducive to the overarching 
objectives of efficiency, cost-effectiveness, and timely 
delivery in construction project management.  

4 Algorithm 
Proximal Policy Optimization (PPO) [20] is selected 

for the mobile factory simulation. The PPO algorithm 
combines ideas from A2C (Advantage Actor-Critic) and 
TRPO (Trust Region Policy Optimization). It is well-
regarded for its effective balance between exploration 

and exploitation, ensuring gradual improvements in 
decision-making. It operates by making incremental 
adjustments to its policies, which prevents drastic 
changes that could destabilize the learning process. This 
characteristic of PPO makes it particularly suitable for 
the mobile factory simulation, where decisions have a 
direct and significant impact on operational efficiency 
and project cost. The algorithm's ability to handle 
complex decision spaces and maintain steady progress is 
aligned with the requirements of coordinating production, 
assembly, and movement in the simulated environment.  

5 Implementation 
The implementation for the RL problem described 

utilizes the OpenAI Gym framework to create a custom 
environment, FactoryEnv, which simulates a mobile 
factory moving through different sections of a 
construction project. It is important to note that the values 
of parameters used in this setup are for illustrative 
purposes only. In a real-world project setting, users have 
the flexibility to customize these values according to 
specific project requirements. This customization 
capability ensures that FactoryEnv can be adapted to 
various construction scenarios, allowing for more 
accurate simulations and effective training of RL models 
tailored to the unique dynamics of each project. The 
environment is characterized by parameters: 

Table 1. Environment parameters 

Parameter Description Value 
num_stops The total number of 

sections the 
infrastructure is divided 

in 

20 

parts_per_stop The number of parts 
required at each section 

10 

assembly_rate The rate at which the 
site assembles parts per 

day 

5 parts 
per day 

production_rate The rate at which the 
factory produces parts 

per day 

8 parts 
per day 

movement_time The time it takes to 
move from one section 

to the next 

3 days 

 
Along with these operational parameters, the 

environment's behavior and agent's performance are 
influenced by a set of reward and penalty parameters, 
defined as follows: 

Table 2 Reward and penalty parameters 

Parameter Description Value 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

741



 

DAILY_COST Cost incurred for each day 
of the project duration. 

-1 

FACTORY_R
UNNING_COS
T_PER_DAY 

Cost incurred for daily 
functioning of the factory 

-10 

MOVE_COST
_PER_DAY 

Additional cost for each 
day the relocation of the 

factory  

-20 

SHIPMENT_C
OST 

Cost per unit of distance 
between factory and 
assembly location 

-0.5 

INVENTORY_
COST 

Cost for parts produced in 
excess of the assembly 

requirements 

-1 

UNDERPROD
UCTION_COS

T 

Cost incurred for parts 
underproduced relative to 
the assembly requirements 

-5 

COMPLETIO
N_REWARD 

Reward granted upon the 
successful completion of 

the entire project. 

1000 

MILESTONE_
REWARD 

Reward for each project 
section completed 

30 

 
Employing PPO via the stable_baselines3 library, this 

study utilizes a multi-layer perceptron for simultaneous 
policy and value function approximation within a 
custom-defined FactoryEnv environment. The model's 
architecture and hyperparameters are meticulously 
calibrated: a linearly scheduled learning rate 
commencing at 1e-4, a discount factor at 0.99, a GAE 
(generalized advantage estimate) lambda at 0.95, and an 
entropy coefficient of 0.005. Additionally, the network 
architecture comprises dual-layered structures with 128 
neurons each for both policy and value functions. Batch 
processing is implemented with 2048 steps per batch, 
balancing computational efficiency with learning 
efficacy. The model's initialization incorporates these 
parameters, while TensorBoard integration facilitates 
detailed progress monitoring. 

6 Results 
In the presented results, we observe the performance 

metrics of a RL model over the course of training, 
measured across one million timesteps. Figure 2 
delineates the trajectory of the training loss, a key 
indicator of the model's prediction accuracy regarding 
future rewards. The plot reveals an initial phase with a 
high variance in loss, indicative of the model's 
exploratory learning and parameter optimization. As 
training progresses, a clear downward trend emerges, 
culminating in a stable, low loss value, which suggests 
that the model's predictions have become more reliable 
and consistent. Figure 3 showcases the evolution of the 

average reward during the model's evaluation phase. The 
initial negative values represent suboptimal decision-
making by the model. However, an enhancement is noted 
as the average reward increases, eventually reaching a 
plateau, demonstrating significant learning and policy 
improvement throughout the training process. 

Figure 2. Training Loss Over Time 
 

Figure 3. Evaluation of Average Reward 
 

7 Validation 

7.1 Single Environment Validation  
In assessing the performance of our PPO-based RL 

model, we employed a quantitative validation strategy 
that entailed a comprehensive analysis of reward 
distributions. This strategy involved executing a random 
policy across 100,000 episodes within a consistent 
environmental setting of FactoryEnv. The objective was 
to establish a baseline distribution of rewards that could 
be leveraged as a comparative measure against the 
deterministic output of our trained RL model. 
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The histogram depicted in Figure 4 illustrates the 
frequency of total rewards obtained from the random 
policy across the 100,000 episodes. A dashed black line 
represents the reward achieved by our trained RL model, 
and a dashed red line denotes the maximum reward 
attained by the random policy throughout its trials. The 
RL model's reward, markedly higher than the random 
policy's mean and maximum reward, underscores the 
learning algorithm's success in optimizing decision-
making to enhance reward outcomes. 

 

 
Figure 4. Reward Distribution of Random Policy and 
Comparison with RL Policy over the Same Setting 

7.2 Diverse Environments Validation  
To validate the robustness of the trained RL model, a 

comparative study was conducted against a baseline 
random policy. The comparison was done across a set of 
100 diversified scenarios within a simulated environment, 
specifically designed to mimic a factory setting 
(FactoryEnv). Each scenario presented a unique 
configuration by varying the assembly rate, a critical 
parameter influencing the environment's dynamics. The 
assembly rates for each scenario were sampled from a 
normal distribution with a mean of 5 and a standard 
deviation of 1, ensuring a spectrum of operating 
conditions to challenge the robustness of the model. The 
trained RL model, developed using the PPO algorithm, 
was compared against the random policy in these 
scenarios to assess its adaptability and performance. The 
key metric for comparison was the total cumulative 
reward achieved by the end of each episode, serving as a 
proxy for the model's decision-making quality and 
efficiency. 

The resulting performance, as shown in Figure 5, 
indicates a significant and consistent outperformance of 
the trained RL model over the random policy across all 
tested scenarios. The RL model achieved higher 
cumulative rewards in each individual case, 
demonstrating not only the ability to generalize across 
different settings but also the robustness of its learned 
policy. 

 
Figure 5. Comparison of RL Model versus Random 

Policy over Different Settings 

8 Conclusion 
This study contributes a novel RL-based scheduling 

model for optimizing the operation of mobile factories in 
infrastructure projects. It encompasses a comprehensive 
method for considering an array of performance 
indicators at the project level, including production and 
inventory costs, project duration, and shipping 
expenditures. As such, the reward and penalty parameters 
are designed to encourage cost-effectiveness and timely 
delivery of prefabricated elements. This aligns with the 
very motivation for applying mobile factories in 
construction projects – on-demand production and just-
in-time delivery. Moreover, our approach exhibits 
remarkable flexibility, effectively adapting to a wide 
spectrum of production environments characterized by 
varying rates, the mobility of production facilities, and 
differing operational states such as idleness. Thus, the 
proposed method presents a holistic decision-making 
tool that can empower factory managers to optimize 
project execution strategies.  

However, this research has some limitations. The 
environmental and reward parameters employed within 
the simulated setting may not entirely capture the 
complexity of real-world projects. For example, the 
COMPLETION_REWARD value could include various 
dimensions like the effort required, the time to 
completion, resources needed, and the complexity of 
tasks. As a next step, the practical application and 
validation of our approach in a real-world project setting 
will be imperative to ascertain its effectiveness and to 
fine-tune the model parameters for enhanced realism and 
applicability. By bridging the gap between theoretical 
modeling and practical implementation, we anticipate 
that our RL-based approach will offer tangible benefits in 
the management of factory and construction operations. 

Acknowledgements 
This work was carried out within the research project 

“Smart Mobile Factory for Infrastructure Projects 
(SMF4INFRA)” and supported by the Swiss National 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

743



 

Science Foundation [grant no. 204852]. 

References 

[1] Seelow A. The Construction Kit and the Assembly 
Line—Walter Gropius' Concepts for Rationalizing 
Architecture. In Arts, pages 95, 2018. 

[2] Safdie M. Beyond Habitat, volume 978-
0262690362. MIT Press, 1973. 

[3] Herzog T. Expodach: Roof Structure at the World 
Exhibition, Hanover 2000, volume 978-
3791323824. Prestel Pub, 2000. 

[4] Haukka S. and Lindqvist M. Modern Flying 
Factories in the Construction Industry, Master’s 
Thesis, Lulea University of Technology, Lulea, 
Sweden. 2015. 

[5] Alvarez M. et al. The BUGA Wood Pavilion - 
Integrative Interdisciplinary Advancements of 
Digital Timber Architecture. In Proceedings of the 
39th ACADIA Conference 2019, pages 490–499, 
Austin, USA, 2019. 

[6] Alix T., Benama Y., and Perry N. A framework for 
the design of a Reconfigurable and Mobile 
Manufacturing System. Procedia manufacturing, 
35:304–309, 2019. 

[7] Wagner H. J., Alvarez M., Kyjanek O., Bhiri Z., 
Buck M., and Menges A. Flexible and transportable 
robotic timber construction platform–TIM. 
Automation in Construction, 120:103400, 2020. 

[8] Martínez S., Jardón A., Victores J. G., and Balaguer 
C. Flexible field factory for construction industry. 
Assembly Automation, 33(2):175–183, 2013. 

[9] Ahn S. J. et al. Integrating off-site and on-site 
panelized construction schedules using fleet 
dispatching. Automation in Construction, 
137:104201, 2022. 

[10] Wang Z. and Hu H. Improved precast production–
scheduling model considering the whole supply 
chain. Journal of Computing in Civil Engineering, 
31(4):04017013, 2017. 

[11] Kedir N. S., Somi S., Robinson Fayek A., and 
Nguyen P. H. D. Hybridization of reinforcement 
learning and agent-based modeling to optimize 
construction planning and scheduling. Automation 
in Construction, 142:104498, 2022. 

[12] Lee D., Lee S., Masoud N., Krishnan M. S., and Li 
V. C. Digital twin-driven deep reinforcement 
learning for adaptive task allocation in robotic 
construction. Advanced Engineering Informatics, 
53:101710, 2022. 

[13] Soman R. K., and Molina-Solana M. Automating 
look-ahead schedule generation for construction 
using linked-data based constraint checking and 
reinforcement learning. Automation in 
Construction, 134:104069, 2022. 

[14] Du Y., and Li J.-q. A deep reinforcement learning 
based algorithm for a distributed precast concrete 
production scheduling. International Journal of 
Production Economics, (2023): 109102. 

[15] Shiue Y.-R., Lee K.-C., and Su C.-T. Real-time 
scheduling for a smart factory using a reinforcement 
learning approach. Computers & Industrial 
Engineering, 125:604-614, 2018. 

[16] Shi D., Fan W., Xiao Y., Lin T., and Xing C. 
Intelligent scheduling of discrete automated 
production line via deep reinforcement learning. 
International Journal of Production Research, 
58(11):3362-3380, 2020. 

[17] Esteso A., Peidro D., Mula J., and Díaz-Madroñero 
M. Reinforcement learning applied to production 
planning and control. International Journal of 
Production Research, 61(16):5772-5789, 2023. 

[18] Sutton R. S., Barto A. G. Reinforcement Learning: 
An Introduction, 2nd ed. MIT Press, Cambridge, 
Massachusetts, 2018. 

[19] Kaelbling L. P., Littman M. L., and Moore A. W. 
Reinforcement learning: A survey. Journal of 
Artificial Intelligence Research, 4:237–285, 1996. 

[20] Schulman J., Wolski F., Dhariwal P., Radford A., 
and Klimov O. Proximal policy optimization 
algorithms. arXiv preprint:1707.06347, 2017 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

744


