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Abstract – 

The maintenance of power lines is challenged by 
the encroachment of vegetation, posing significant 
risks to the reliability and safety of power utilities. 
Traditional methods, based on manual inspection, are 
not only resource-intensive but also lack the necessary 
precision for effective and proactive maintenance. 
This paper aims to develop an automated, accurate, 
and efficient approach to vegetation management in 
the vicinity of power lines. It leverages advancements 
in data collection using LiDAR scanning technology, 
which despite its potential, faces computational 
challenges in processing large-scale 3D point clouds to 
accurately identify power lines and surrounding 
vegetation. To overcome this challenge, the proposed 
method deploys the RandLA-Net model for the 
semantic segmentation of power lines and nearby 
vegetation in point cloud datasets. Furthermore, the 
post-processing analysis of the segmented data uses 
clustering and rule-based thresholding to refine the 
identification of vegetation. Then, proximity detection 
is applied using spatial queries based on a KDTree 
structure. The results of the case study demonstrate 
the computational efficiency and accuracy of the 
proposed method, presenting a promising solution for 
power utilities. 
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1 Introduction 
Vegetation management is critical for ensuring the 

safety and reliability of power distribution systems. The 
encroachment of overgrown vegetation near power lines 
poses significant risks, potentially leading to power 
outages, fires, and other hazards. The primary problem in 
this sector has been the reliance on manual inspection, 
which is labor-intensive, time-consuming, and often 
limited in accuracy and frequency. This traditional 
approach struggles to keep pace with the growing 

demand for stable energy and the urgent need to mitigate 
risks associated with overgrown vegetation. 
Consequently, there is a need for more efficient, 
automated solutions in vegetation management. 
Advances in sensing technologies, particularly Light 
Detection and Ranging (LiDAR) scanning, combined 
with Machine Learning (ML) algorithms, have led to the 
development of Automated Vegetation Management 
(AVM) systems. These systems promise more frequent 
monitoring, potentially revolutionizing vegetation 
management [1]. However, a significant challenge lies in 
processing the vast volumes of 3D point cloud data 
generated by LiDAR [2], particularly in accurately 
segmenting and classifying each point to identify 
vegetation-related risks effectively. Unlike conventional 
methods relying on visual inspection or 2D imaging, 
point cloud data provides comprehensive spatial 
representation, allowing accurate distance measurements 
and identification of fine details of power lines and 
surrounding vegetation. This advancement offers a 
systematic and reliable approach to power line 
monitoring, supported by recent studies demonstrating its 
efficacy in automated vegetation management systems 
and power line inspection [3]. 

The objectives of this paper are: (1) to accurately 
detect vegetation and power lines from LiDAR data using 
Deep Learning (DL), and (2) (2) to conduct detailed post-
processing analysis to detect the proximity of trees and 
power lines. This approach is expected to enhance the 
reliability of power distribution systems and potentially 
lead to significant cost savings for utility companies. The 
results demonstrate the practical application of the 
proposed method in a real-world urban setting.  

2 Literature Review 
LiDAR technology has emerged as a powerful AVM 

tool for power distribution lines. Its ability to provide 
high-resolution 3D data has made it crucial for detecting 
and analyzing vegetation in the context of power line 
management. Gollob et al. [4] investigated the accuracy 
of estimates for individual trees and forest stand variables 
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using a mobile laser scanning system. Their study 
highlights the impact of scan variation on tree parameter 
measurements. Voelsen et al. [5] segmented point cloud 
data from a Mobile Mapping LiDAR dataset. They used 
a method combining region growing and random forest 
classification to distinguish between static and dynamic 
objects, such as poles and vegetation. Wen et al. [6] 
emphasized the significance of high-accuracy and high-
efficiency 3D sensing and associated data processing 
techniques for various applications, including detecting 
trees and poles. Lu et al. [7] introduced a localization 
system for autonomous vehicles using cluster-based 
methods to extract pole-like objects, including trees and 
street lights, from 3D LiDAR point clouds. Kutz et al. [8] 
discussed the application of high-resolution imagery and 
LiDAR-derived canopy height models in land cover 
mapping, crucial for resource management and planning. 
Gaha et al. introduced a new LiDAR-based clustering 
method for detecting poles and distribution lines, offering 
improvements in accuracy and efficiency [9]. However, 
the scope of their study was primarily focused on single-
phase lines and had limited effectiveness in occluded 
environments. 

ML has significantly changed AVM around power 
lines, allowing for rapid data processing and previously 
unattainable insights. Kyuroson et al. developed an 
unsupervised ML framework to detect and analyze power 
lines and surrounding vegetation in Power Line Corridors 
(PLCs) using various remote data acquisition techniques 
such as airborne, mobile, and terrestrial laser scanning 
[10]. Torres de Almeida et al. combined satellite imagery, 
airborne LiDAR data, and ML algorithms, including 
Linear Regression, Classification and Regression Trees 
(CART), and Random Forest (RF) to map vegetation 
height in PLCs, aiding in management planning [11]. Li 
et al. employed drone data, airborne LiDAR, and ML 
algorithms, including RF, and Support Vector Machine 
(SVM) for classifying tree species in transmission line 
corridors [12].  

Abongo et al. introduced a novel framework for 
detecting power lines using LiDAR data, utilizing a 
combination of ML (XGBoost) and geometric methods 
[13]. However, their approach was primarily limited to 
the detection aspect, without exploring subsequent data 
processing and analysis for vegetation management. 
Haroun et al. reviewed vegetation encroachment 
detection techniques using satellite images, emphasizing 
the potential of ML and DL algorithms to enhance 
detection accuracy and flexibility [14]. Park et al. used 
feature-enhanced convolutional neural networks (CNNs) 
including AlexNet, ResNet18, and VGG11 for 
classifying images from Google Street View into 
categories related to utility systems and vegetation 
overgrowth, aiding in vegetation management 
prioritization [15]. Mohd Rapheal et al. assessed a ML-

based geospatial method for classifying electricity assets 
using high-density mobile laser scanning data, achieving 
detection accuracies of 65% for overhead power lines and 
63% for electricity poles [16]. Although focused on river 
management, Rabanaque et al. presented a ML approach 
(SVM and RF) for analyzing geomorphological 
characteristics and vegetation density using LiDAR and 
multispectral satellite images [17]. Horning et al. 
discussed the challenges and advances in mapping land 
cover using ultra-high-resolution aerial imagery, 
including ML algorithms for image processing [18]. 
Oehmcke et al. utilized DL systems (MSENet14, 
KPConv, PointNet) to predict wood volume and above-
ground biomass directly from airborne LiDAR point 
clouds [19]. Their method showed significant 
improvements in accuracy compared to traditional 
approaches. Gribov and Duri proposed a solution for 
constructing line features modeling each catenary curve 
present within a series of points representing multiple 
catenary curves [20]. This solution can be applied to 
extract power lines from LiDAR point clouds. 

Mahoney et al. utilized a combination of various ML 
algorithms, including RF, Gradient Boosting Machine, 
and Artificial Neural Network (ANN), to integrate 
remote sensing of structural and optical properties of 
vegetation cover for classifying and mapping shrubland 
habitats [21]. Furthermore, studies like that of Amani et 
al., which utilized bathymetric LiDAR data for marine 
habitat mapping, showcase the versatility of LiDAR and 
RF algorithms in vegetation classification [22]. Amado 
et al. presented a method for extracting power lines from 
LiDAR point cloud data, demonstrating accurate and 
automatic extraction capabilities [23]. Awrangjeb 
introduced a power line extracting and modeling 
approach using LiDAR data, which significantly aids in 
the detection and modeling of power lines, offering a 
reliable solution to the challenges faced in power line 
extraction [24]. Li and Guo discussed the application of 
LiDAR technology for power line inspection, 
highlighting its advantages in obtaining high precision 
3D spatial information and entire power line corridor data, 
which is critical for effective inspection and maintenance 
[25]. Table 1 shows a comparative overview of most 
related works, outlining key aspects such as methodology, 
utilized dataset, main research focus, and critical 
performance metrics across different studies. 

3 Proposed Framework 
This paper proposes using Random Sampling in 

Large-scale Point Cloud Analysis Network (RandLA-
Net) model [28], designed for the semantic segmentation 
of large 3D point clouds, for AVM. This model was 
selected due to its highest overall accuracy level in 
semantic segmentation of the Toronto-3D dataset [29]. 
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However, the trained model was not available; thus, we 
retrained the model with our specific data considering the 
intensity of the points and focusing on the three classes 
of interest: vegetation, poles, and power lines. This 

approach addresses the challenge of handling extensive 
volumes of 3D point cloud data to accurately segment 
and classify each point to efficiently pinpoint vegetation-
related risks in AVM. However, the segmentation 
process is only the first step. The subsequent challenge, 
and a critical aspect of this paper is the post-processing 
analysis of semantic segmentation. This involves 
employing Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) [30] and rule-based 
thresholding to isolate objects that meet specific criteria, 
crucial for separating distinct urban elements and 
reducing noise. Additionally, we implement a proximity 
detection using KDTree method to evaluate potential 

risks based on spatial relationships between trees and 
power lines in urban environments. Figure 1 provides an 
overview of the proposed framework. 

 
3.1 Semantic Segmentation 

 The RandLA-Net model [28], efficient in processing 
high-density point clouds, was used for semantic 
segmentation, focusing on trees, power distribution lines, 
and poles. RandLA-Net stands out due to its unique 
approach, employing random point sampling for 
downsampling. This significantly reduces computational 
complexity while maintaining the integrity of the point 
cloud geometric details. It incorporates a local feature 
aggregation module, which includes Local Spatial 
Encoding and Attentive Pooling, to capture intricate local 

Table 1. Comparative overview of most related works 

Reference Year Methodology Used Dataset Main Focus IoU for classes Comparative 
Highlights 

Wang et 
al. [26] 

2023 CA-PointNet++ 
with Coordinate 
Attention 
module 

Utilized a self-
constructed 
UAV Lidar 
dataset 

Transmission 
corridor 
segmentation 

Power lines: 
67.4% 

Lacks proximity 
focus, lower IoU 

Cano-
Solis et al. 
[27] 

2023 VEPL-Net 
focusing on 
ensemble 
methods 

UAV imagery 
may lack 
LiDAR's depth 
resolution 

Vegetation and 
power line 
segmentation 
without 
proximity focus 

Vegetation: 77%, 
Power lines: 64%, 
showing room for 
improvement 

Good in vegetation 
detection, less so in 
detailed context, lacks 
proximity analysis 

Abongo et 
al. [13] 

2023 XGBoost with 
basic geometric 
analysis 

Standard 
LiDAR dataset 
without 
specified 
complexity 

Sole focus on 
power line 
detection 

Power lines: 
82.49% 

Effective in basic 
detection, lacks 
complexity 

Our study 2024 Advanced 
RandLA-Net 
with specific 
post-processing 
optimizations 

Toronto-3D, 
providing 
diverse urban 
landscape 
challenges 

Dual focus on 
both power line 
and vegetation 
with proximity 
analysis 

Trees: 96.81%, 
Power lines: 
87.83%, Poles: 
79.36% 

KDTree for proximity 
analysis, detailed 
class-specific IoU 
scores, and enhancing 
detection accuracy 

 

 
Figure 1. Overview of the proposed framework 
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structures effectively [28]. The network's architecture, 
featuring shared Multilayer Perceptrons (MLPs) and 
dilated residual blocks, enhances its processing speed, 
allowing it to handle up to one million points in a single 
pass with notable accuracy. This efficient and innovative 
approach makes RandLA-Net particularly suitable for 
large-scale point cloud analyses, demonstrating superior 
performance in both speed and accuracy compared to 
other methods, such as PointNet++. 

To assess the performance of the RandLA-Net model 
in this context, we used the Intersection over Union (IoU) 
metric. This is a standard metric in evaluating 
segmentation models, as it quantifies the accuracy of the 
model in classifying each point. It works by measuring 
the overlap between the model's predicted classifications 
and the actual, ground truth classifications. The IoU 
provides a comprehensive overview of the model's 
performance across all classes, offering insights into its 
precision and effectiveness in segmenting different urban 
elements. A higher IoU value indicates better model 
performance and a more accurate representation of the 
real-world scenario. 

3.2 Clustering and Rule-Based Thresholding 
In order to refine the segmented point cloud data in 

the initial stage of post-processing, partial clustering 
algorithm, DBSCAN, was selected for its ability to 
identify clusters of various shapes and densities within 
the data without the need for predefined number of 
clusters. This feature made DBSCAN particularly 
suitable for handling the complex and varied structure of 
the urban dataset. Key parameters like the epsilon values 
and minimum samples were carefully adjusted to align 
with the dataset's unique features, ensuring sensitivity to 
the varied densities and distributions of urban elements. 
In addition to DBSCAN, rule-based thresholding was 
implemented, setting specific height and point count 
thresholds for each urban feature class, such as trees and 
poles. This approach effectively isolated significant 
urban objects within each category while reducing noise 
and irrelevant data, thereby enhancing the clustering 
results' overall quality and accuracy. 

3.3    Proximity Detection between Trees and 
Power Lines 

To assess the risk associated with trees near power lines, 
a K-Dimensional Tree (KDTree) structure was adopted 
for streamlined spatial querying, aiming to effectively 
evaluate potential risks. The KDTree, known for its 
ability to rapidly query points in a multi-dimensional 
space, proved ideal for analyzing spatial relationships 
within the point cloud data. The process involved 
utilizing the KDTree structure to efficiently identify the 
nearest power line to each tree. Once these proximities 

are calculated, they are compared against a safety 
threshold. Tree areas falling within this threshold are 
identified as potential hazards. Considering the dataset's 
large scale, ensuring computational efficiency was a 
critical concern. This approach optimizes performance 
and resource utilization in large-scale, complex data 
operations. 

4 Implementation and Case Study 
In the implementation phase, post-processing 

techniques including clustering, rule-based thresholding, 
and proximity detection were deployed using Python. 

4.1 Data Acquisition and Preparation 
Toronto-3D dataset, developed by Tan et al. [2] was 

used in the case study. This dataset was collected along a 
1-kilometer section of Avenue Road in Toronto, Canada. 
It is a large dataset containing about 78.3 million data 
points. The dataset is notable for its high point density, 
with an average of 1000 points per square meter on the 
ground. This high density is crucial for capturing detailed 
features of the urban environment, which is vital for this 
study. The data was collected using a LiDAR sensor on a 
Mobile Laser Scanning (MLS) system. The LiDAR 
sensor captured up to 700,000 points per second, with a 
vertical field of view from -10 to +30 degrees, and an 
accuracy of better than 3 cm. Each point in the dataset 
has several attributes including the position in meters 
(XYZ coordinates), the color reflectance (RGB), LiDAR 
intensity, GPS time of collection, scan angle, and the 
object class label. The object class labels cover a range 
of urban features, making the dataset useful for semantic 
segmentation. These labels include roads, road markings, 
natural elements (trees, shrubs), building parts, power 
distribution lines, poles (utility poles, traffic signs), 
vehicles, and vertical barriers (fences, walls). 

Data preparation involved loading the point cloud 
data and performing grid subsampling with a grid size of 
0.06 meters to reduce data volume while preserving key 
features. For validation datasets, projection indexes were 
created to map model results back to the original dataset, 
ensuring a structured and efficient dataset ready for 
semantic segmentation and analysis. A projection index 
is a reference that maps each point in a subsampled point 
cloud back to its original location in the full dense point 
cloud, ensuring that any analysis or modifications applied 
to the reduced dataset can be accurately reflected in the 
original, larger dataset. The raw data from the dataset 
underwent preprocessing to convert the .ply files into a 
suitable text format for the semantic segmentation 
process. Figure 2 shows a sample area of point cloud data.  
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4.2 Semantic Segmentation 
The Toronto-3D dataset was divided into four 

sections, each covering about 250 meters of the road. 
Sections 1, 3, and 4 were used for training and Section 2 
was used for testing. The dataset underwent two separate 
training processes. Initially, it was trained without 
considering RGB and intensity data to focus on the 
geometric features (X, Y, Z). Then, it was trained again, 
this time incorporating the RGB and intensity 
information (X, Y, Z, R, G, B, intensity) to assess the 
impact of these attributes on model performance. 

Using this dataset, the RandLA-Net model underwent 
100 epochs of training to enhance its accuracy in 
segmenting point cloud data. The Adam optimizer, 
known for its efficiency with large-scale data, was 
utilized. An initial learning rate of 0.01 was set, gradually 
reduced by 5% per epoch to refine model adjustments 
and convergence. A batch size of 4 was maintained to 
balance computational resources and effective learning 
during training sessions. Throughout this segmentation 
process, the model accurately assigned a class label to 
each point, enabling the differentiation of various urban 
elements. The training time for the model was 124 hours 
and 33 minutes on a LAMBDA workstation with one 
NVIDIA RTX A6000 GPU, 48 GB RAM/GPU, and an 
AMD Ryzer Threadripper 3960×48-core CPU. The 
model without considering RGB and intensity achieved 
an overall accuracy of 93.08%, representing the ratio of 
correctly labeled points to the total number of points 
across all classes. The model considering RGB and 
intensity achieved an overall accuracy of 95.42%. 

During the testing phase, each epoch was composed 
of 25 steps, with every step processing a batch of test data. 
In the testing, a step is a single iteration over a batch of 

data and an epoch represents a single pass through the 
entire test dataset. For individual classes, the model 
without considering RGB and intensity showed very 
good performance with the classes of trees, power 
distribution lines, and poles achieving IoU of 95.76%, 
87.61%, and 76.37%, respectively. The model 
considering RGB and Intensity showed improved 
performance with the classes of trees, power distribution 
lines, and poles achieving IoU of 96.81%, 87.83%, and 
79.36%, respectively. The observed improvement of over 
3% in the poles class in the model considering RGB and 
intensity may be due to the distinctive and unique colors 
of the poles. However, the lower accuracy in pole 
detection in both models could be attributed to the 
inherent complexity of urban environments where poles 
are located. Factors such as occlusion by other objects, 
varying lighting conditions, and the poles' similarity to 
other vertical structures might make them harder to 
distinguish accurately. Compared to the work of Abongo 
et al. [13] focusing only on power distribution line 
detection, which achieved an IoU of 82.49%, our method 
notably surpasses this performance, achieving an IoU of 
87.83% for power distribution lines. 

4.3 Clustering and Rule-Based Thresholding 
 In the subsequent stage of our analysis, we used a 

combination of DBSCAN, height, and point count 
thresholding techniques to identify and isolate objects 
meeting our predefined criteria. This method involved 
adjustments of DBSCAN parameters, such as epsilon (i.e. 
maximum distance between samples) and the minimum 
number of samples, to match the unique attributes of the 
Toronto-3D dataset. Following the clustering process, we 
retained clusters that surpassed the designated height 
threshold (e.g., 8 meters for poles) and fulfilled the 

 
Figure 2. A sample area of point cloud data 
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minimum point count threshold (e.g., 500 points for 
poles). This step resulted in a refined dataset, distinctly 
differentiating and emphasizing significant urban 
features from less relevant objects. Table 2 presents the 
clustering values and thresholds for each class. Figure 3 
shows segmentation results before and after clustering 
and rule-based thresholding. 

Table 2. Clustering values and thresholds for each class 

Class 
Clustering values Defined thresholds  

Epsilon 
(m) 

Minimum 
samples 

Minimum 
point count 

Minimum 
height (m) 

Trees 0.5 20 12000 6.5 
Poles 0.5 10 500 8 
Power 
lines 0.3 3 - - 

4.4 Proximity Detection between Trees and 
Power Lines 

      The next step aims to compare the spatial data of trees 
and power lines to enable proximity detection for risk 
assessment. Leveraging KDTree's queries, we efficiently 
determined the closest power line point to each tree point 
in a multidimensional space. Assessing this against a 
predetermined safety threshold of 1 meter allowed us to 
identify parts of trees posing risks due to their proximity 
to power lines, which were flagged as potential hazards. 
Figure 4 shows the post-processed semantic 
segmentation result, highlighting hazardous tree areas 
(red points) within the safety perimeter of power 
distribution lines. 

5 Conclusions and Future Work 
The contribution of this paper lies in its integrated 
approach, utilizing the RandLA-Net model enhanced by 

RGB and intensity data analysis for precise urban 
vegetation management. This is further complemented 
by novel post-processing techniques, including 
DBSCAN clustering and rule-based thresholding, which 
collectively refine risk assessment and provide a detailed 
understanding of vegetation's proximity to power lines. 
This paper presents a comprehensive approach for urban 
vegetation management in proximity to power lines using 
point cloud data in conjunction with the RandLA-Net 
model. The approach is further enhanced by post-
processing techniques such as clustering and rule-based 
thresholding considering the specific needs of the 
application. Moreover, the incorporation of proximity 
detection for risk assessment added a practical dimension 
to the proposed framework. The RandLA-Net model 
considering RGB and intensity showed improved 
performance with various classes, including trees, power 

distribution lines, and poles, achieving IoU of 96.81%, 
87.83%, and 79.36%, respectively. The effectiveness of 
DBSCAN clustering and rule-based thresholding was 
apparent in the clarity and distinction of the isolated 
objects. Additionally, the proximity detection analysis 
efficiently pinpointed significant tree areas where trees 
can pose threats to power lines.  
      The study's findings rely on the Toronto-3D dataset, 
which might not fully represent all urban, and/or 
suburban landscapes. While the results of RandLA-Net 
exhibited high accuracy, its performance in different or 
more complex environments requires further exploration. 
Moreover, the computational demands of these methods 
could limit their feasibility in resource-constrained 
settings. Future research should prioritize testing the 
proposed framework across diverse environments, 
refining the algorithms for broader applicability, and 
integrating additional data sources for a more 
comprehensive approach. 

           
                                      (a) Before                                                                                  (b) After 

Figure 3. Comparing segmentation results before and after clustering and rule-based thresholding 
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