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Abstract  

Urban sewer systems are vital yet often neglected 
components of modern infrastructure system. 
Inspecting these systems is expensive due to labour 
costs and the need for manual examination by 
professionals. In addition to the challenges posed by 
traditional methods, developing deep-learning-based 
automatic defect detection models requires a vast 
number of bounding box labels, which are 
challenging to acquire. To address these gaps, our 
study introduced the application of Weakly 
Supervised Object Localization (WSOL) for 
automated defect localization in sewer pipes. WSOL 
is a technique that allows for the localization of 
objects within images using only image-level labels, 
without the need for precise bounding box 
annotations. We adopted a state-of-the-art WSOL 
method that mitigates feature directions with class-
specific weights misalignment, enabling more 
accurate and complete localization of defects. By 
generating heatmaps from Sewer-ML's image-level 
annotations, bounding box labels are eliminated, 
rendering our approach scalable and cost-effective. 
The proposed WSOL-based approach was validated 
through five distinct classes of defects and one 
construction feature, demonstrating the promising 
localization performance. Our method achieved mean 
MaxBoxAccV2 scores of 64.33% and 56.89% when 
using ResNet-50 and VGG-16 backbones, respectively, 
while also attained classification accuracies of 87.00% 
for ResNet50 backbone and 83.00% for VGG16 
backbone. As a pioneering contribution, our work 
established a new standard for automated sewer 
system maintenance, offered a benchmark for the 
application of WSOL methods using solely image-
level annotations in defect localization for urban 
sewer systems, and further expanded the frontier of 
weakly supervised learning in critical infrastructural 
applications.  
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1 Introduction 
Urban sewer system are integral to modern 

civilization across various urban settings, playing a 
pivotal role in health, sanitation, and overall well-being. 
Yet, the inspection and upkeep of these intricate 
underground networks often go overlooked. Traditional 
inspection methods are labour-intensive, costly, and 
hinge on manual evaluations by specialists. While these 
methods are effective, they aren't scalable for expansive 
urban sewers. The push towards deep-learning for defect 
detection introduces another challenge: the need for 
numerous bounding box labels. Acquiring such labels is 
not only tedious but also consumes significant resources. 
Therefore, an effective automatic localization system is 
urgently needed to overcome these shortcomings. 

The core research question this study seeks to address 
is: "How can feature-level defect detection be realized 
with image-level annotations in the context of urban 
sewer system inspection?" The advent of Weakly 
Supervised Object Localization (WSOL) offers a 
promising alternative, paving the way for more 
automated, efficient, and cost-effective solutions as it 
relies solely on image-level annotations. Yet, while 
WSOL has seen success in other domains [1-5], its 
application in the realm of sewer system inspection is still 
quite new. To the best of our knowledge, this is the first 
work to apply weakly supervised learning for automatic 
defect detection in the sewer pipelines with evaluation of 
localization precision. It's essential to note that existing 
WSOL methods, which typically utilize Class Activation 
Maps (CAMs), have their limitations in accurately 
localizing defects, as they tend to focus on only the most 
prominent features [1]. This poses a concern in the 
context of sewer systems where the full shape and scope 
of defects are crucial for remedial actions. In this study, 
we adopted a state-of-the-art WSOL method proposed by 
Kim et al. [2] that mitigates feature directions with class-
specific weights misalignment. Our hypothesis is that the 
proposed WSOL method can achieve reasonable 
localization accuracy for sewer defects using only image-
level labels, ensuring a more holistic and accurate 
localization of sewer defects.  
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The main contributions of this study are listed below:  

1) Applied weakly supervised learning for automated 
defect localization in urban sewer systems with 
evaluation of localization precision;  

2) Provided a scalable solution that obviates the need 
for tedious and resource-intensive bounding box 
labels with reasonable localization accuracy; 

3) Developed A benchmark and methodological 
framework for future research into weakly 
supervised defect localization in sewer pipelines. 

The rest of the paper is structured as follows: Section 
2 delves into the recent advances and the unique 
challenges of both sewer inspection techniques and 
defect detection. In Section 3, we detail our methodology, 
including the dataset used and our experiment set up. 
Section 4 offers a comprehensive evaluation, presenting 
our experimental results. Finally, Section 5 wraps up with 
the study's limitations, prospects for future research, and 
a concluding remark. 

2 Related Work 
In recent studies on sewer inspections, deep learning 

methods have been increasingly utilized to improve 
performance of defect detection [6]. For example, Cheng 
and Wang [7] contributed an automated defect detection 
approach using faster R-CNN, demonstrating how deep 
CNNs can identify and locate common defects in CCTV 
images. Li et al. [8] introduced innovations like 
strengthened region proposals and global context fusion 
to enable fine-grained defect severity grading, surpassing 
other methods in this capability. Yin et al. [9] applied 
state-of-the-art YOLOv3 for real-time automated 
detection in videos, showing advantages in processing 
speed and accuracy over manual review. And Yin et al. 
[10] further developed a CCTV video interpretation 
algorithm and sewer pipe video assessment (SPVA) 
system based on their previous developed deep learning-
based framework. 

However, the major defect inspection models rely 
on effective supervised learning methods that cost much 
time in the manual annotation process for training [11]. 
Therefore, researchers have begun to explore alternative 
methods to reduce the need for manual annotation in 
defect inspection models. For example, Zhang et al. [12] 
used a GAN framework to leverage both labelled and 
unlabelled images, achieving 79-81% mean IOU on a 
steel defect dataset with only 1/8 to 1/4 full supervision. 
Zhang et al. [4] used weak image-level tags rather than 
detailed pixel-level annotations, extracting spatial 
information from tags through category-aware 
convolutions and pooling. In another study, Wu et al. [5] 
relied solely on image-level labels for training, 
improving CAM techniques to achieve performance 

surpassing some fully supervised methods. Manual 
labelling of feature-level data is both time-consuming 
and prone to human error. Thereby, our study pioneered 
the application of WSOL for accurately localizing sewer 
defects with a methodological framework used for fair 
comparative evaluation. Sewer pipelines inspection 
presents unique challenges such as varying lighting 
conditions, occlusions, and highly irregular object shapes. 
The adopted method [2] seeks to overcome the 
limitations of current WSOL methods by mitigating 
feature directions with class-specific weights 
misalignment, thereby ensuring more accurate defect 
detection in sewer pipelines. Furthermore, the completely 
automated systems that include automatic labelling tools 
need to be developed for more efficient sewer inspections 
[6]. The automatic generated bounding boxes from 
heatmaps can be served as inputs for training a 
supervised detection model to reduce the redundant 
annotation process. 

3 Methodology 

3.1 Dataset 
The dataset utilized in this research is Sewer-ML 

[13], which is the first publicly available dataset 
dedicated to sewer defect classification. Comprising 1.3 
million images sourced from 75,618 videos, the data was 
aggregated from three Danish water utility companies 
over a nine-year period. The image-level annotations 
were performed by licensed sewer inspectors in 
compliance with the Danish sewer inspection standard, 
Fotomanualen [14]. This contributes to the high 
reliability and consistency of the annotations.  

For the task of WSOL, it is essential to have images 
with only one class of object for generating accurate 
heatmaps. As such, we curated a subset of Sewer-ML 
specifically designed for WSOL tasks. The customized 
dataset information is provided in table 1. The images 
number are the same per class for training, validation and 
test sets. Our training set consists of 1,000 images per 
category, focusing on critical defect classes such as 
settled deposits (AF), roots (RO), attached deposits (BE), 
displaced joints (FS), and notably, cracks, breaks, and 
collapses (RB). Among these, RB stands out as the most 
paramount defect due to its severe implications [15]. 
These defects were chosen based on both their significant 
impact on infrastructure integrity and their frequent 
occurrence. Additionally, while drilled connections (PB) 
is not a defect but a construction feature, we have 
incorporated it into our dataset to rigorously test the 
proposed model's discernment capabilities, given PB's 
unique characteristics. 

For validation, we adopted a set of 10 images per 
defect class, each with bounding box annotations to assist 
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in hyperparameter tuning and model selection, but not 
used for training. This choice of a fixed-size validation 
set is influenced by Choe et al. [16], advocating that small 
fixed number of fully annotated images offers a robust 
yet adaptable baseline for comparative evaluation, 
thereby ensuring methodological consistency for future 
research, given that certain level of localization labels are 
inevitable for WSOL. 

Our test set encompassed 50 images per selected 
class, designed to rigorously evaluate the model's 
generalization capabilities. By customizing the Sewer-
ML dataset in this fashion, we provided a methodological 
framework that not only catered to the specialized 
requirements of WSOL but also set a precedent for future 
research in sewer defect localization.  

Table 1. Dataset Information 

Dataset Sewer-ML 
(Haurum and 

Moeslund, 2021) 
Classes 6 
Train 1000 

Validation 10 
Test 50 

*Image numbers are shown per class 

3.2 Method 
The WSOL method proposed by Kim et al. [2] 

bridges the gap between image classification and object 
localization by aligning feature directions to class-
specific weights. 

 
Figure 1. WSOL structure developed by (Kim et 
al. 2022) 

Figure 1 shows the overall of their proposed method. 
Traditional WSOL methods using CAMs only highlight 
the most discriminative parts of an object [1]. In contrast, 
the approach by Kim et al. [2] enhances the alignment of 
all feature directions to the target class weights through 
two main strategies: 1) feature direction alignment loss 
and 2) consistency regularization with attentive dropout. 
This enables the activation of less discriminative object 
regions in the CAM, allowing for more accurate and 
complete localization. The alignment and consistency 
losses are incorporated into the training of a CNN-based 
classifier (ResNet-50 or VGG-16) on the Sewer-ML 

images. This guides the model to align all feature 
directions to the weights of each defect class. 

At inference time, CAMs are generated for each 
input image to produce a heatmap highlighting potential 
defect regions. The continuous CAM is then thresholded 
to obtain a bounding box localization for each predicted 
defect class. This allows for weakly supervised defect 
localization using only image-level labels, eliminating 
the need for manually annotated bounding boxes. 

3.3 Experiment Set Up and Training Strategy 
We conducted experiments using NVIDIA GeForce 

RTX 4080 GPU. The WSOL model was implemented in 
PyTorch, initialized with weights pretrained on CUB-
200-2011 [17] for ResNet50 and on ImageNet-1K [18] 
for VGG16. We evaluated the approach using both VGG-
16 and ResNet-50 backbones. 

During training, we used a warm-up stage where only 
the classification and consistency losses are active for the 
first few epochs. After warm-up, the full training loss was 
used including the feature direction alignment losses.  

We selected the best checkpoint based on localization 
accuracy on the validation set. The model was then 
evaluated on the test set to report performance for the six 
classes. 

4 Results and Discussion 
The performance of two deep learning models, 

ResNet50 and VGG16, was evaluated using two primary 
metrics: Accuracy and Ground Truth Location (GT-
LOC). Accuracy measures the percentage of images for 
which the predicted label matches the true label. GT-
LOC, assesses the accuracy of predicting the object's 
exact location within an image, reflecting the model's 
ability in object localization. 

Table 2. Accuracy and GT-LOC on Validation Set 

Backbone Accuracy GT-LOC 
ResNet50 83.33% 65.00% 
VGG16 81.67% 70.00% 

Table 3. Accuracy and GT-LOC on Test Set 

Backbone Accuracy GT-LOC 
ResNet50 87.00% 68.33% 
VGG16 83.00% 59.67% 

Table 2 shows the accuracy and localization 
performance for both backbones on validation set. 

• ResNet50: Exhibits a strong classification accuracy 
of 83.33%. For object localization, as indicated by 
the GT-LOC, it achieves 65.00%. 

• VGG16: It demonstrates a solid accuracy of 81.67%. 
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The GT-LOC score of 70.00% shows its capacity in 
precisely locating objects within images. 

Table 3 shows the accuracy and localization 
performance for both backbones on test set. 

• ResNet50: The model has an accuracy of 87.00%, 
highlighting its consistent performance. The GT-
LOC score of 68.33% further emphasizes its 
reliable object localization capability. 

• VGG16: Achieving an accuracy of 83.00%, 
VGG16 maintains its robustness in object 
recognition. However, there's a notable drop in GT-
LOC to 59.67%, suggesting some variability in its 
localization performance on the test set. 
Additionally, we compared our MaxBoxAccV2 

scores [16]. MaxBoxAccV2 measures the models' 
localization accuracy with ground-truth class based on 
multiple IOU thresholds. Table 4 and Table 5 indicate 
that both ResNet50 and VGG16 backbones showed 
strong results at the loc IOU 30 and 50 thresholds, with 
scores ranging from 59.67% to 93.00%. Specifically, 
both ResNet50 and VGG16 have good performances at 
the loc IOU 30 threshold, achieving as high as 93.00%. 
However, as the rigor increased to the loc IOU 70 
threshold, both models faced challenges, with accuracies 
dropping to between 18.00% and 31.67%, highlighting 
the need for potential refinements at higher precision 
levels. The average localization accuracy across all 
thresholds placed VGG16 slightly ahead of ResNet50 on 
the validation set, with scores of 63.89% and 61.67% 
respectively, however, ResNet50 regained advantages on 
the test set with a score of 64.33% compared to 56.89% 
for VGG16. This indicates that while both models are 
proficient at less stringent thresholds, ResNet50 exhibits 
a more consistent performance across the board. Our data 
analysis confirmed that the proposed WSOL method 
achieved significant localization accuracy thereby 
validating our hypothesis and addressing the core 
research question. 

Table 4. MaxBoxAccV2 Scores for ResNet50 and 
VGG16 on Validation Set 

Backbone ResNet50 VGG16 
Loc_IOU_30 90.00% 90.00% 
Loc_IOU_50 
Loc_IOU_70 

Mean 

65.00% 
30.00% 
61.67% 

70.00% 
31.67% 
63.89% 

Table 5. MaxBoxAccV2 Scores for ResNet50 and 
VGG16 on Test Set 

Backbone ResNet50 VGG16 
Loc_IOU_30 93.00% 93.00% 
Loc_IOU_50 
Loc_IOU_70 

68.33% 
31.67% 

59.67% 
18.00% 

Mean 64.33% 56.89% 

A confusion matrix visually represents the 
performance of a classification model by contrasting 
actual versus predicted classifications. The diagonal 
elements represent the correct classifications, while off-
diagonal elements indicate misclassifications. A well-
performing model would have higher numbers on the 
diagonal and lower numbers off-diagonal. 

Figure 2 and Figure 3 show the confusion matrices for 
both ResNet50 and VGG16 backbones on the test set: 
ResNet50 showed strong diagonal values for categories 
BE, PB, and RO, while VGG16 exhibited good results 
for classes AF, PB and RO. For instance, PB consistently 
received a high true positive score of 50 for both 
backbones, indicating that both models have a firm grasp 
on identifying this class. Similarly, AF, BE, and RO 
mostly contained high values on the diagonal and 
minimal off-diagonal interference. However, some 
classes show room for improvement. For instance, FS 
and RB had a few off-diagonal values, indicating some 
misclassifications. RB, in particular, had some 
misclassifications where it was mistaken for other classes. 
Figure 4 provides some CAM examples for both 
backbones for each class. 

 
Figure  2.  Confusion Matrix for ResNet50 on Test 
Set 
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Figure  3.  Confusion Matrix for VGG16 on Test 
Set 

 
Figure 4. CAM examples for the two backbones 
for each class: (a) CAM examples for ResNet50; 
(b) CAM examples for VGG16. 

Different backbones are good at localizing different 
classes. In our study, we found that ResNet50 is 
relatively better at capturing classes are smaller in scale, 
like cracks, breaks, and displaced joint, while VGG16 
can give a more holistic localization to roots and 
collapses. Both backbones are good at localizing attached 
deposits and drilled connection feature, while both fail 
for settled deposits. A model based on a more recent 
backbone or even the combination of backbones for 
different classes should be developed in the future. 

Our findings indicated that the VGG16 model tends 
to produce larger heatmaps for defect localization 
compared to the ResNet50 model. This difference in 
heatmap size can have implications on asset management 
decisions. Larger heatmaps may overestimate the scope 
of defects, resulting in unnecessary repairs or 
replacements. Meanwhile, smaller heatmaps could 
underestimate damage, failing to fully resolve 
infrastructure issues.  

 Visualizing CAM to see how and why the method is 
localizing the defects can be valuable, especially in 
critical infrastructure inspection like sewer systems 
where human experts need to trust and understand the 
model's decision-making. 

5 Conclusion and Limitation 
This study demonstrated the promising potential of 

WSOL techniques for automated defect detection in 
sewer pipelines. The analysis of our results revealed clear 
trends and relationships that affirm the effectiveness of 
the proposed WSOL method for sewer pipeline defect 
detection using image-level annotations. By generating 
localization heatmaps directly from image-level labels, 
our approach eliminated the need for tedious bounding 
box annotations. Across five common sewer defect 
classes and one construction feature, both ResNet50 and 
VGG16 achieved reasonable localization performance 
without any bounding boxes for training. 

Specifically, our models attained average 
MaxBoxAccV2 scores of 64.33% (ResNet50) and 56.89% 
(VGG16) on the test set. The ResNet50 backbone 
demonstrated slightly more consistent localization across 
different IOU thresholds. Additionally, both models 
showed proficiency in classifying most defect types, with 
test accuracies reaching as high as 87.00% for ResNet50 
backbone and 83.00% for VGG16 backbone. 

While these initial results are encouraging, there 
remain limitations to be addressed. First, the localization 
accuracy is still far from perfect, with ample room for 
improvement. Second, certain defect classes like settled 
deposits proved more challenging for the models to 
precisely localize. Third, visual analysis revealed that the 
two backbones had relative strengths and weaknesses in 
localizing different defect types. An ensemble or multi-
backbone approach may help mitigate these class-
specific shortcomings. Additionally, transitioning to 
Weakly Supervised Object Detection (WSOD) 
approaches would be a valuable future work. WSOD 
removes the limitation of one object per image class, 
enabling multi-object defect detection learning directly 
from image labels. This could better handle real-world 
sewer images with multiple defects present. Adopting a 
WSOD approach would require more computational 
resources but may further advance automated sewer 

BEAF FS PB

RB-CollapsesRB-Breaks RB-Breaks RO
(a)

(b)
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analysis. Another important future work is to compare 
our WSOL model against traditional fully supervised 
models in terms of processing time and accuracy, to 
understand the trade-offs between annotation efficiency 
and localization precision in sewer pipeline defect 
detection. This comparison will help in identifying the 
most effective approach for automated infrastructure 
assessment.  
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