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Abstract –  

In post-disaster scenarios where on-site operations 

are unfeasible, remote operation of robots or drones 

by human operators presents an effective and 

promising solution for survey and search-and-rescue 

(SAR) missions. These critical missions require 

human operators to rapidly process extensive visual 

data and allocate attention within dynamic, complex, 

and hazardous environments. While previous 

research has largely focused on the influence of 

salience and meaning in routine environments, our 

study shifts this focus towards the unique challenges 

faced by human operators in emergency settings. 

Utilizing eye-tracking technology and constructing 

feature maps of the environment, this research 

quantitatively assesses the roles of salience, meaning, 

task demands, and object relevance from the 

perspective of human operators in post-disaster 

environments, exploring their interrelationships. Our 

findings reveal that task demands and object 

relevance significantly affect how human operators 

allocate their visual attention, with this influence 

being modulated by factors such as salience and 

meaning, while meaning continues to play a 

predominant role in guiding attention. This study 

advances our understanding of the visual attention 

dynamics of human operators in critical SAR 

missions, providing essential insights for the design of 

more effective remote operation systems for 

emergency response.  
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1 Introduction 

The increase in severe natural disasters calls for 

innovative approaches in emergency management[1,2]. 

Remote search-and rescue (SAR) has been propelled to 

the forefront of effective emergency response with the 

advances in robotics and unmanned aerial vehicles 

(UAVs), offering the ability to access areas otherwise 

unreachable or dangerous by human responders[3]. Key 

players in this process are operators who pilot drones or 

robots in disaster zones. These operators manage 

equipment and process extensive visual data from the 

field to guide SAR efforts. The challenge encompasses 

more than technology operation; it involves analyzing 

and prioritizing received continuous stimulus. Their 

effectiveness depends on efficiently allocating attention 

and identifying crucial information to the visual feed, 

requiring complex attention skills. 

Research into operators' visual attention can elucidate 

patterns of attention allocation, enabling predictions 

about focus distribution and, based on these insights, 

provide tailored support to enhance their operational 

performance. The study of attention has acknowledged 

that attention is a limited resource and is influenced by 

multiple factors[4,5]. Visual attention, as a specific 

subset of attention research, has been extensively 

explored, offering valuable frameworks for 

understanding how individuals process visual stimuli[6]. 

The framework is divided into two main directions, i.e., 

visual attention in a scene is driven by bottom-up, low-

level image features, such as color, luminance, object 

feature, and edge orientation, which are combined to 

form a saliency map[7,8]; and attention is guided by top-

down, high-level cognitions, such as knowledge, 

semantics, and scene context[9,10]. However, because 

cognition is difficult to represent and compute directly, 

many current studies on attention guidance still focus 

primarily on image saliency[11]. 

However, while these models and theories provide a 

comprehensive understanding of visual attention in 

general, they fall short of addressing the specific 

challenges faced by remote operators in disaster 

scenarios. The existing literature, while rich, often 

focuses on controlled environments or tasks that are less 

complex than those encountered in real-world disaster 

response. Moreover, the specific aspect of visual 

attention allocation in interpreting and analyzing real-

time imagery, as required in remote operation, has not 

been extensively studied. Considering the distinctive 

challenges inherent in disaster environments—including 

swiftly changing scenarios, profound emotional impacts, 
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and the necessity for prompt decision-making—the 

discrepancy between extant research findings and 

practical needs is starkly highlighted. Research has 

substantiated that variables such as fear emotions[12], 

visual stimuli[13], and cognitive burdens critically affect 

both information reception and the distribution of visual 

attention. 

Therefore, this study focuses on post-disaster high-

risk task scenarios, aiming to investigate the attention 

mechanism in the specific environment of remote 

operations after natural disasters and explore the 

influencing factors of attention under dynamic and high-

pressure tasks. It is expected to provide more efficient 

and usable solutions for emergency response and disaster 

management while enriching the theoretical framework 

of attention allocation modeling. 

2 Related works  

In the realm of post-disaster remote rescue operations, 

understanding the visual attention of the driver is critical 

for effective management and response. The dynamics of 

visual attention, especially in high-stress and complex 

environments such as post-disaster scenarios, are 

multifaceted and are influenced by a multitude of factors 

ranging from scenario characteristics to individual 

cognitive processes. 

Visual attention is an important component of human 

visual perception. When confronted with a complex 

visual scene, human beings will efficiently localize the 

parts of interest and analyze the scene by selectively 

processing some regions of the visual input, a process 

that is also known as prioritized allocation of attention in 

the presence of limited attention. In order to understand 

the mechanism of human visual attention, there have 

been many scholars who have extensively explored the 

underlying theories of visual attention. Feature-

Integration Theory[4], saliency-based visual attention 

model[7] and graph-based visual saliency model[8] 

provide essential insights into how visual features are 

processed and prioritized. These theories highlight the 

significance of bottom-up stimuli characteristics in 

directing attention. 

With the development of computational vision, many 

studies have begun to emphasize the effects of top-down 

high-level features on visual attention. Researches 

demonstrate that local scene semantics guide attention 

during natural visual search in scenes[10,11]. 

Additionally, the work of Võ [14] delves into the deeper 

layers of scene structure and meaning, further 

emphasizing the role of high-level cognitive factors in 

visual attention. This is especially important in disaster 

scenarios, where quickly understanding the structure of 

the scene and recognizing meaningful elements in a scene 

full of debris can be life-saving. 

Nowadays, most of the research on visual attention is 

based on the living environment and simple visual tasks, 

but the tasks and environments in remote rescue 

operations are a new dimension and challenge for visual 

attention research. Fan, Li, and Su[15] discuss the 

construction of human visual attention maps in 

teleoperation, pertinent to remote rescue scenarios where 

operators navigate through rubble remotely. The 

augmentation of reality, as explored by Eyraud, Zibetti, 

and Baccino[16], demonstrates how technological 

enhancements can alter the allocation of visual attention, 

a factor critical in designing remote rescue operation 

interfaces. 

Understanding visual attention in the context of post-

disaster remote operations has practical implications. 

Driewer, Schilling, and Baier[17] discuss human-

computer interaction in rescue systems, highlighting the 

need to tailor these systems to accommodate the visual 

attention patterns of operators. Additionally, Rea et al.[18] 

emphasize the importance of attention-grabbing 

techniques in robot teleoperation, a key component in 

remote rescue scenarios. 

In this study, we synthesize multiple factors such as 

salience, meaning, scene, and object semantics to explain 

and predict patterns of human attention in non-routine 

scenarios. The study delves into the factors influencing 

operators' attention in post-disaster remote search and 

rescue, with a special focus on the particular mechanisms 

of attention in high-risk tasks and continuously changing 

scenarios. 

 

Figure 1. Previous related experience of participants 

3 Method 

3.1 Eye movements: an experiment in post-

disaster remote SAR 

We employed a rigorously designed experimental 

framework utilizing VR technology. A virtual 3D scene 

of a two-story building after an earthquake was built in  
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Figure 2. Maps for an example scene. (a) Scene (b)Semantic segmentation mask (c) Fixations scatter plot 

(d)Saliency map (e)Meaning map (f)Attention map

Unity as a stimulus for the experiment. Users were able 

to roam around the model following a specified route 

while completing tasks related to search and rescue. 

Recognizing the critical role of stress in such high-stakes 

environments, we integrated time constraints and 

multitasking requirements to induce realistic stress levels. 

A pilot test with two participants was conducted before 

the formal experiment to verify the appropriateness of the 

experimental design and ensure that the system functions 

properly. 

3.1.1 Participants 

A total of 24 (12 males and 12 females) college 

students volunteered to participate in this experiment. 

The average age was 23.1 years old. As Figure 1, none of 

the participants had experience in remote or on-site 

search and rescue, ensuring a baseline level of expertise 

consistent across the sample. However, most of the 

participants had experience with 3D gaming and 

teleoperation, reflecting a proficiency with virtual 

environments. This participant profile was intentionally 

selected to elucidate the intrinsic characteristics of visual 

attention in SAR scenarios, absent of specialized training 

biases. Such a selection criteria facilitate the 

extrapolation of our findings to a broader audience, 

potentially enhancing the inclusivity and effectiveness of 

remote SAR training programs. 

Table 1 Categories of objects 

Object type Object class 

Danger broken wall, concrete floor, cooking 

bench, droplight, fallen wall, light, 

picture, rebar 

Information bed, broken bricks, broken rubble, 

broken door, closet, door, stairs, 

toilet, window 

Environment background, bedside table, book, 

cabinet, scattered ground object, 

chair, cupboard, kitchen hood, 

curtain, ventilation, grid, fridge, 

tableware, shelf, sofa, table, wall, 

washbasin, washing machine, 

wooden floor 

3.1.2 Scene design 

The stimulation scene of the experiment is the indoor 

environment of a two-story building after an earthquake 

developed in Unity modeled after a real scene (Figure 

2(a)). The model was meticulously designed to closely 

mimic post-disaster scenarios, facilitating immersive 

task execution by the participants. Considering the post-

earthquake SAR mission, the building's attributes were 

set as a residence, and the interior design was arranged 

according to common home life scenes, including living 
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room, kitchen, bathroom, bedroom, and other spaces. In 

the scene, various kinds of rich objects were arranged to 

enhance the realism of the scene, and based on this, after 

removing some object classes that were small in size and 

could be recognized as having no impact on the study, the 

points of interest were formed based on the object classes 

as a unit. As shown in Table 1, the objects were 

categorized into three categories (danger, information, 

and environment) according to the task.  

3.1.3 Apparatus 

Eye movements were recorded using a Tobii Eye 

Tracker 4C at a sampling frequency of 90Hz. The 

tracking accuracy of the eye tracker was 38° and 29° 

horizontally and vertically, respectively. Participants 

were seated 85 cm from the 21-inch screen, giving the 

scene a viewing angle of approximately 26.5° × 20° at 

1024 × 768 pixels.  

3.1.4 Experimental procedure 

The experiment was structured into four distinct 

phases. Initially, participants were provided with a 

standardized guide to familiarize themselves with the 

experimental scenario, roles, and tasks. Main tasks 

entailed identifying lifeforms, ensuring UAV and future 

personnel safety, and learning about the indoor 

environment for later tasks. Operators viewed a video of 

the urban road scenario for task understanding, with 5 

minutes allocated for mastery. 

Next, participants underwent a 5-point calibration 

with an eye-tracker for accuracy. In the second stage, 

they practiced the task for 1 minute. The third stage, the 

main test, lasted 15 minutes, featuring an automated 

scene change along a fixed route with static intervals for 

detailed observation. Throughout the route, there were 30 

designated pause points where participants were required 

to identify and click on objects necessitating attention 

following task comprehension, all within an 8-second 

window at each location. 

The final stage involved completing a questionnaire 

about the experiment and gathering essential information. 

3.2 Analysis 

3.2.1 Data processing 

For the eye movement data, gaze and sweep were 

distinguished by an Initial-Velocity Threshold (I-VT) 

filter, with the threshold set at 30°/s. The I-VT filter was 

based on the assumption that if the eye movement data 

exceeded the threshold, then the eye movement was most 

likely intentional, otherwise it could be recognized as 

noise or other non-intentional eye movements. In 

addition, any gaze shorter than 60 ms and longer than 

1500 ms was excluded as an outlier (Figure 2(c)). 

For the experimental scenarios, each type of object 

was replaced in unity with a specific color material 

without illumination to form a 3D scene with a semantic 

segmentation mask (Figure 2 (b)). 

3.2.2 Attention maps 

Attention maps were generated as described in 

Henderson and Hayes[9]. Briefly, a fixation frequency 

matrix based on the locations (x, y coordinates) of all 

fixations was generated across participants for each scene. 

a Gaussian low-pass filter with a circular boundary and a 

cutoff frequency of - 6 dB was applied to each matrix, to 

account for foveal acuity and eye-tracker error. The 

spatial extent of the low-pass filter was 152 pixels in 

diameter (Figure 2(f)). 

In addition, the significance and saliency maps were 

normalized to a common scale using image histogram 

matching using the gaze density maps of each scene as a 

reference image before statistical analysis. 

3.2.3 Visual saliency maps 

The saliency maps(Figure 2(d)) for the 30 stops in the 

scene routes were computed using the Graph-Based 

Visual Saliency (GBVS) toolbox with default settings[8]. 

GBVS uses information about the global structure of the 

image to improve the efficiency of saliency computation. 

is a well-known saliency model that performs well in 

complex scenes. 

3.2.4 Meaning Maps 

Meaning maps of 30 stops in a scene route were 

created according to the method proposed by Henderson 

and Hayes. 

The stimuli of the session consisted of images of the 

30 stopping points. Each image was segmented into 

circular patches on two scales: fine (300 patches/image) 

and coarse (108 patches/image.) There were ultimately 

9000 unique fine patches and 3240 unique coarse patches. 

A total of 132 participants rated the patches on the 

web application we built. All participants were university 

students from Zhejiang University, and each of them was 

allowed to participate in this experiment only once. Each 

participant would rate 300 randomized patches after 

reading the experiment content and the two patch 

examples of low meaning and high meaning. Participants 

were asked to rate each patch on a 6-point likert scale 

(very low, low, somewhat low, somewhat high, high, and 

very high) based on their understanding of the degree of 

meaning of each patch. Each unique patch was rated by 

at least 3 independent raters. Finally, the meaning map of 

each stopping point image was obtained by averaging, 

smoothing, and combining the ratings of both 

segmentation scales (Figure 2(e)). 
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Figure 3. Correlation between meaning and saliency maps 

 

Figure 4. Squared linear correlation and semi-partial correlation by scene

4 Results 

4.1 Meaning and visual saliency 

Following Henderson and Hayes[9], we used squared 

linear and semi-partial correlation to analyze meaning 

maps and saliency maps across the whole scene. 

It is suggested that meaning and visual salience are 

highly correlated across scenes and that the guidance of 

attention by visual salience may come from meaning. 

This argument has been validated to some extent in 

everyday scenarios after the significance map approach 

was proposed. Error! Reference source not found. 

shows the correlation between meaning and salience for 

each scene in a complex environment after a disaster. On 

average, the correlation is 0.26 (s.d. = 0.12) across the 30 

scenarios. A one-sample t-test confirmed that the 

correlation was significantly greater than zero, t(29) = 

11.7, p < 0.0001, 95% confidence interval (CI) [0.21, 

0.30]. This demonstrates that meaning and visual 

salience are correlated even in non-daily scenarios. It is 

important to consider the relationship between these two 

when investigating their role in visual attention modeling. 

Figure 4(a) presents the correlation of meaning and 

salience on attention for all scenes. For the mean squared 

linear correlation across the 30 scenes, meaning 

explained 12% of the change in attention (M = 0.12, s.d. 

= 0.08), while salience explained 7% of the change in 

attention (M = 0.07, s.d. = 0.07). A two-tailed t-test 

showed that this difference was statistically significant, 

t(58)=5.63, p < 0.0001, 95% confidence interval [0.004, 

0.084]. 

The ability of meaning and salience to independently 

explain attention was further explored by computing 

squared semi-partial correlations, controlling for shared 

variance in attention. Figure 4(b) illustrates the unique 

variance of meaning and salience on attention across all 

scenarios. On average, meaning independently explained 

10% of the variance in attention (M = 0.10, s.d. = 0.09), 

double the ability of salience to explain it (M = 0.05, s.d. 

= 0.05). This suggests that meaning, controlling for 

salience, produces 10% additional variance in the 

attention graph; whereas salience only produces 5%. This 

difference remained significant by a two-tailed t-test 

(t(58) = 2.56, p < 0.01, 95% CI [0.01, 0.08]). This 

suggests that meaning relative to visual salience 

continues to dominate directing attention in cluttered 

post-disaster scenes. 

4.2 Obejct value 

Some studies[19,20] have demonstrated that objects 

predict the allocation of attention points in non-search  
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Figure 5. Object semantic category maps of two example scenes 

 

 
Figure 6. Squared linear correlation between object semantics and attention

tasks. That is, when performing a non-search task, 

people's attention points tend to be drawn to specific 

objects in an image. 

In the experiments, task and object semantics were 

highly correlated. As in Figure 5, segmenting the object 

semantics and distinguishing labels according to different 

categories (belonging to the category and not belonging 

to the category) forms an attribute map of the object 

semantics. 

In visual search, attention may be guided by the target 

or by distractors. Figure 6 shows the squared linear 

correlations between different semantic categories of 

objects and attention in all scenes. The danger category 

explained 2.9% of the variation in attention (M = 0.029, 

s.d = 0.04), with a one-sample t-test significantly greater 

than 0 (t(29) = 4.36, p < 0.001, 95% CI [0.016, 0.043]); 

the information category explained 2.3% of the variation 

in attention (M = 0.023, s.d. = 0.04), with a one-sample 

t-test significantly greater than 0 (t(29) = 3.43, p < 0.01, 

95%CI [0.009, 0.037]); and the environment category 

explained 1.4% of the attentional change (M = 0.014, s.d. 

= 0.02), with a one-sample t-test significantly greater 

than 0 (t(29) = 3.73, p < 0.001, 95%CI [0.006, 0.022]). 

This result demonstrates that object semantics guided 

visual attention in the task and that the target objects 

(hazard class, information class) were able to play more 

of a role relative to distractors (environment class), 

achieving a more task-appropriate guidance. 

Figure 7 illustrates the results of the linear correlation 

analysis of semantic attribute maps with meaning. For all 

scenarios on average, the correlation coefficient between 

the danger category and the meaning map was -0.14 (M 

= -0.14, s.d. = 0.20), with a significant one-sample t-test 

(t(29) = -3.80, p  <  0.001, 95% CI [-0.217, -0.065]); the 

correlation coefficient between the information category 

and the meaning map was 0.076 (M = 0.076, s.d. = 0.15), 

with a significant one-sample t-test (t(29) = 2.76, p  < 

0.01, 95% CI [0.020, 0.132]); the correlation coefficient 

of the environmental category with the significance map 

was -0.018 (M = -0.018, s.d. = 0.146) and the one-sample 

t-test was non-significant (t = -0.6712, p = 0.507 > 0.05). 

This suggests that the target objects (danger category,  
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Figure 7. Linear correlation between object semantics and meaning 

information category) are correlated with the meaning 

map and cannot be considered independent of their 

guidance of visual attention with meaning. Among them, 

the danger category is negatively correlated with the 

meaning map. Dangerous objects are more difficult to 

recognize than everyday scene objects because of the 

characteristics of breakage, loss of original order, 

confusion, and mismatch with inherent cognition, 

making semantics slightly negatively correlated in the 

representation of meaning. The distractors (environment 

class), on the other hand, are uncorrelated with the 

meaning map, which further suggests that distractors may 

be difficult to provide valuable recognition information 

in the task. 

Since object semantics and meaning are partially 

correlated, the independent bootstrapping of salience, 

meaning, and semantics on attention was further 

investigated by multiple linear regression. Table 2 shows 

the independent influence of either factor on attention, 

controlling for the other factors. In particular, meaning 

independently explained 9.4% of the variation in 

attention (M = 0.094, s.d. = 0.092), whereas object 

semantics remained relevant to attention independently 

of significance, with each category explaining about 2% 

of the variation in attention. Relative to other factors, the 

guidance of attention by meaning remained dominant. 

Table 2. Multiple linear regression result 

Category M(𝑅2) S.D. p-value 

Meaning 0.094 0.092 5.3e-19 

Saliency 0.050 0.055 5.9e-48 

Danger 0.025 0.028 2.5e-4 

Information 0.013 0.019 2.2e-12 

Environment 0.018 0.024 2.5e-2 

5 Conclusion and future works 

Previous work has suggested numerous factors that 

will have an impact on visual attention, which will be 

directly expressed in human behavior and task efficiency 

and accuracy. Most of the past researches base their 

experiments on daily environment, using some real world 

or simplified feature expressions that people often come 

into contact with as stimuli, but in fact, high-stress and 

high-risk environments form stronger stimuli and 

cognitive loads, which make the human attention pattern 

more complex. At the same time, the analysis about 

scenes and semantics has mainly focused on the 

quantitative expression of a certain semantic feature, 

while failing to completely describe the post-disaster 

environment and the work faced by search and rescue 

personnel. 

In this study, a post-earthquake cluttered environment 

was designed as an experimental stimulus, and routes and 

tasks were designed according to the remote search and 

rescue approach. Our methodological approach, 

employing eye-tracking technology alongside the 

development of scenario-specific feature maps, enabled 

an in-depth analysis of visual attention in high-stress 

SAR conditions. The interactions between the guiding 

factors of salience, meaning, task, and object were 

investigated, and it was found that the effect of any factor 

on attention was not independent and that meaning 

remained dominant. This suggests that the construction 

of an attention model needs to take multiple factors into 

account, and that a more comprehensive model will lead 

to a better explanation of attention. The inclusion of 

participants without SAR background revealed their 

capability to allocate attention to targets as per task 

demands, providing empirical support for mobilizing a 

broader workforce in post-disaster rescue efforts. This 

study also used semantic attribute maps to represent 

scene features and understand how objects affect visual 

attention. These findings provide a more comprehensive 

perspective for understanding human visual attention 

mechanisms. 

In summary, the main findings of this study are: 

• Meaning and visual salience are significantly 

correlated in post-disaster scenes. They both 

predicted the distribution of attention, but after 

controlling for the relationship between 

significance and salience, only significance 
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contributed to the unique variance of the attention 

distribution. 

• Objects do not direct attention independently of 

meaning in semantically related tasks, although the 

correlation between the two is weak. 

• Object relative value is also able to direct visual 

attention, with guidance from the target object 

being more significant relative to guidance from 

distractors. 

Although this study provides a robust analysis of the 

mechanisms of visual attention for teleoperated drivers in 

natural disaster scenarios, it does have some limitations. 

In the study of dynamic scenes, time and cognitive 

updating formed by repetitive images were not added to 

the analysis of attention to form a model of attention with 

a temporal sequence. As a result, the study did not 

provide a complete picture of the possible effects of 

successive visual images. Subsequent research could 

build on the foundation of this study and try to establish 

a more complete theory of visual attention and construct 

a more accurate predictive model of attention. Further 

work could also assist the operator to locate the target 

through multimodal modeling, give real-time positive 

guidance to attention, and improve the efficiency and 

success rate of search and rescue. 
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