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Abstract -
Recent data from the Federal Highway Administration

highlights an alarming increase in fatal crashes in road-
way work zones, underscoring the need for enhanced worker
safety measures. This study addresses this concern by evalu-
ating stress levels among roadway workers exposed to multi-
sensory AR-assisted warnings during varying work inten-
sities, using a high-fidelity Virtual Reality environment for
simulation. Unlike previous studies that mainly concentrated
on external factors, this study investigates the internal impact
of these factors on workers. Our findings from 18 partici-
pants indicate significant physiological differences between
light- and medium-intensity activities in terms of heart rate
variability, mean heart rate, NN50, pNN50, and HF-HRV,
though SCR peaks showed no considerable variation. The
study’s significant contributions include insights into higher
stress levels in workers performing moderate-intensity tasks,
aiding in the development of improved warning systems. Ad-
ditionally, it offers valuable data for optimizing resource al-
location in construction settings. Ultimately, this research
bridges a gap and provides insights for future research on im-
proving both safety and productivity in roadway work zones
through informed stress management and effective hazard
warning systems.
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1 Introduction
Fatal traffic crashes at roadway work zones have been

on the rise in recent years. According to the Federal High-
way Administration (FHWA) work zone facts and statistics
report, there was a significant increase in fatal crashes at
work zones from 863 in 2020 to 956 in 2021 [1]. Research
has shown that excessive stress in workers heightens the
risk of errors, injuries, and various health issues among
workers while concurrently being associated with reduced
productivity levels [2]. In roadway work zones, lane clo-
sures, proximity to moving vehicles, night shifts, and the
presence of construction vehicles and employees can all
cause stress in workers. A construction worker’s behavior
can be significantly affected by stress [3]. The hormones
released by the brain under stress, including cortisol and
adrenaline, may have an impact on cognitive processes,
judgment, and response times.

In the wake of rising highway worker fatalities at road
construction sites, there’s an immediate need to create ad-

vanced safety systems that safeguard workers. Augmented
Reality (AR) shows promising potential in alerting work-
ers, but its implementation in road work zones and its
impact on stress and attention have not been thoroughly
investigated. Currently, most of the research is focused
on external factors like lane closures, traffic congestion,
warnings, determining safe work radius, and traffic man-
agement. While this is important, the body of knowledge
is missing an integrated effort to analyze how these fac-
tors affect the worker’s stress. Therefore, this study aims
to assess the effects of two categories of work (light- or
medium-intensity activity) on stress levels experienced by
roadway workers when they were receiving multi-sensory
warnings during their routine tasks.

This study aims to assess the stress levels experienced
by roadway workers as they receive multi-sensory AR-
enabled warnings during their routine tasks, examining
the effects within two categories of work as either light-
or medium-intensity activity. Furthermore, it leverages a
high-fidelity virtual reality environment for safe evaluation
and testing of rare high-risk scenarios. Additionally, it in-
troduces a model that enables continuous and non-invasive
monitoring of stress levels among roadway workers based
on work activity. The proposed methodology can be lever-
aged for active monitoring of stress in the field, thereby
enhancing safety at construction sites and promoting the
well-being and productivity of workers.

2 Literature Review
2.1 Mental Stress in Construction Workers

The number of mortality and disability cases involving
construction workers was the highest amongst the major
industrial sectors [4]. Current approaches investigating the
physical demands of various tasks provide valuable infor-
mation for evaluating certain construction activities. How-
ever, these approaches often focus on specific individual
traits, such as physiological characteristics, and environ-
mental factors, such as ambient temperature and humidity.
In simpler terms, this means that employees may exert
varying levels of effort when performing the same task
due to these individual and environmental differences [5].
In individuals working under continuously demanding and
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stressful conditions, emotional stress manifests in chronic
fatigue, emotional drain, and a loss of devotion to job du-
ties. Stress can lead to reduced attention on work tasks and
subsequently cause one to ignore safety behaviors, thereby
increasing injury incident rates [6].

Molen et al.[7] presented a qualitative study on the na-
ture and feasibility of measures to reduce work stress.
Construction work conditions can induce anxiety that may
be high enough to elicit a robust fear response. Fear and
anxiety are known to have different neuro-anatomical sub-
strates and physiological outcomes and may lead to differ-
ences in behavior and action tendencies [8].

Because they are at the bottom of the organizational
hierarchy, construction workers have little authority over
their work. These organizational stressors not only stress
out the construction workers but also affect how they be-
have in terms of safety. The primary factor behind most
construction workers’ injury events is a deterioration in
safety behaviors [6]. In the case of roadway construc-
tion and maintenance, dynamic worksite conditions and
proximity to live traffic frequently expose highway work-
ers to unsafe work zone proximity, resulting in accidents
[9, 10, 11].

2.2 Stress Monitoring Using Wearable Sensors

Everyone reacts to stress differently; thus, measuring
and tracking stress can be difficult. Psychoanalysis, hu-
man sensing, and medical examinations could be used to
identify the signs and symptoms of stress. Basic signs of
elevated stress include headaches, stiff muscles, sleepless-
ness, and rapid heartbeat [12]. In the clinical setting,
physiological indicators of biochemical reactions, such
as stress hormones, have been widely used as accurate
stress markers. Because stress-related hormones, such as
cortisol and glucocorticoids, alter in response to stress,
monitoring these hormone changes can give us useful in-
formation about how stressed people are [13]. Though
this strategy is effective and desirable, it is impractical
for continuous stress monitoring at an active construction
site because serum, saliva, urine, or hair samples must
be taken repeatedly to measure stress-related hormones.
Continuous monitoring of stress is particularly important
on construction sites due to the constantly changing nature
and challenges at the workplace. Additionally, the analysis
of the collected biological samples necessitates laboratory
processing, which is challenging to implement in the field.
To bypass this issue, recent studies [14, 15] have utilized
wearable sensors for the assessment of stress levels. For
this purpose, physiological signals, which are generated
by the body’s processes, can be collected. These signals
have traditionally been categorized into two groups. The
first group includes electrical physiological signals such
as electrodermal activity (EDA) [16], electroencephalog-

raphy (EEG) [17], heart rate (HR), heart rate variability
(HRV), electrocardiography ECG [18], photoplethysmog-
raphy (PPG) [19], peripheral skin temperature (ST) [20].
The second group comprises non-electrical physiological
signals, like inertial measurement units (IMU) and poten-
tial of hydrogen (pH). Variations in electrical physiological
signals are closely linked to stress levels [5]. Accurately
determining workers’ stress levels in the field can lead to
early recognition of stress, thereby enhancing both safety
and productivity at construction sites.

A smart sensor in a wristband can provide the signal
known as EDA. By measuring the fluctuation in skin con-
ductance, EDA provides information about the electrical
characteristics of the skin. An EDA sensor inserts a low,
steady voltage into a wristband-style sensor. Next, the
voltage variations brought on by sweat gland activity are
monitored. A wristband-style sensor contains an infrared
thermopile that measures the ST signal. An infrared ther-
mopile uses the skin’s infrared energy to measure tem-
perature. A higher temperature is correlated with higher
infrared energy. [21, 22]. Heart signal analysis allows for
the computation of heart activity characteristics known as
heart rate variability (HRV). These characteristics result
from processing the heart signal across time, frequency,
and nonlinear domains. For instance, in the time domain,
an HRV metric is the root mean square of successive heart-
beat intervals (R-R intervals), termed RMSSD. Frequency
domain HRV metrics include the power within specific
frequency bands (such as high frequency - 0.15 to 0.4 Hz
and low frequency - 0.04 to 0.15 Hz) denoted as HF and
LF within the HRV spectrum. Lastly, in the nonlinear
domain, an HRV feature example is the entropy calculated
from beat-to-beat intervals.

Earlier research has demonstrated that these character-
istics are associated with specific human conditions. For
instance, stress levels have been linked to a reduction in
RMSSD, while an increase in HF (high frequency) is as-
sociated with cognitive load [23]. Electrodermal activity
(EDA), also known as Galvanic Skin Response (GSR),
has similarly exhibited correlations with human condi-
tions like stress and workload. EDA signals are typically
broken down into two primary components: tonic and
phasic. Tonic represents long-term changes in the signal,
while phasic accounts for momentary shifts in the EDA
signal. The tonic aspect helps establish the skin conduc-
tance level (SCL), while the phasic component defines the
skin conductance responses (SCR). Both SCL and SCR
have been found to be linked with heightened cognitive
load and stress levels.

3 Method
To achieve the objective of the study, we designed an

experiment in a high-fidelity Virtual Reality environment
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replicating a real-world roadway work zone. The study
protocol (21-0357) was reviewed and approved by the In-
stitutional Review Board (IRB) at the University of North
Carolina at Charlotte. Prior to data collection, all individ-
uals were briefed about the data-collection procedure, and
had the option of choosing to opt out of participation at
any time without giving any explanation. None of the par-
ticipants mentioned any physiological or physical issues
impacting their ability to function at work. The partici-
pants were asked to perform two routine roadway main-
tenance tasks in the VR environment while wearing the
sensing technologies and warning delivery devices. Three
members of the research team recorded the activities over
a half-hour session.

AR-assisted safety protocols within roadwork zones
combined with warnings can extensively impact the re-
sponse to danger and safety of workers as shown in Figure
1 Thus, it is indispensable to determine the worker’s re-
sponse to stress in a roadway work zone to gain a better
understanding of the usability and effectiveness of the AR-
assisted safety technology.

Figure 1. Outline of the AR-assisted Warning System

In this study, we evaluated the metrics related to the
skin and cardiovascular system. To achieve this, we em-
ployed a wristband-type wearable equipped with embed-
ded sensors, including photoplethysmography (PPG), skin
temperature (ST), and electrodermal activity (EDA). The
PPG sensor analyzes the difference between transmitted
and reflected light and quantifies the variations in blood
pulse within the arteries. This difference served as an in-
dicator of heart activity. Additionally, we investigated car-
diovascular parameters such as heart rate (HR) and heart
rate variability (HRV). These parameters were derived by
further analysis of the obtained data from the PPG sensor.
It should be noted that PPG technology is commonly inte-
grated into smart wearables and can be effectively utilized
in both naturalistic and experimental settings.

3.1 Experiment Design

The experiment design consisted of participants trig-
gered by warnings at certain time intervals while carry-
ing out maintenance activities categorized into light and
medium, as follows:

Warning Trigger: This consisted of three warning stim-
uli that were administered to the participants while they
carried out the task in the VR environment. All three
multi-sensory warnings were intended to communicate
predicted risk to the workers by delivering haptic, audio,
and visual cues at the same time. Tizen Native frame-
work was used to administer the haptic stimulus, which
utilizes a predefined pattern available in the API [24]. The
audio warning was a high-pitched beep sound with a fre-
quency of 44,100 Hz and a duration of 0.2 milliseconds.
The warnings were designed to function simultaneously,
without any delay, as soon as the back-end system acti-
vated them. Moreover, the visual warnings about poten-
tial hazards were delivered using AR simulation in the VR
environment.

Activity Types: The construction tasks were categorized
as low and medium-intensity activities. Similar separa-
tion of tasks has been done previously based on energy-
expenditure prediction program (EEEP) [5] and [25].

Light Activity: These work scenarios include tasks like
standing, briefing, and other tasks involving little move-
ment of the body parts. Assembly, reading the con-
struction drawings, and inventory work are a few exam-
ples of typical low-intensity tasks. For the purpose of
low-intensity activity, an inspection task was chosen for
this study, which included taking a picture of a clogged
stormwater inlet by the roadway shoulder. Such incidents
are a common maintenance task at roadway work zones
where curbs are often blocked by overgrowth of vegetation,
small debris, and fallen leaves.

Moderate Activity: These tasks include tasks like clean-
ing up the site, locating tools, moving light materials, and
measuring and cutting sheetrock. For the purpose of the
study, cleaning the clogged inlet drainage by using a leaf
blower was selected as a medium-intensity task. Cleaning
jobs, as such, are standard upkeep at roadway work zones.

3.2 Apparatus

Roadway Work Zone in Virtual Reality. The study used
the guidelines provided in the Manual on Uniform Traffic
Control Devices (MUTCD) [26] as a reference to create
a virtual highway work zone environment. Figure 2(c)
shows the simulated environment, including live traffic
and highly detailed 3D models, closely resembling the
real roadway work zone environment. Using the VR envi-
ronment developed by the research team [27], participants
were equipped with a VR headset while holding a real-life
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tablet (light activity) or a leaf blower (medium activity).
Also, they wore a smartwatch for delivering the haptic
warning and a wristband for collecting physiological data.
The figure also depicts the immersive and interactive VR
environment captured from the participants’ viewpoints
while they performed the tasks of the experiment.

The modeling utilized the Oculus Quest 2 VR headset in
the Virtual Reality simulation as shown in Figure 2(a) Fur-
thermore, the Unity 3D game engine was used to develop
the stream VR software. To allow the exact simulation
interaction and user experience in the VR interface, the
participants were able to simultaneously observe the gad-
gets and equipment (smartwatch, tablet, and leaf blower)
in the VR while wearing the smartwatch and handling the
tablet/leaf blower during the actual participation.

Figure 2. Appratus of the Experiments (a) Hardware
and Software Used for warning delivery, (b) Hard-
ware and Software Used for Data Collection, and (c)
Virtual Reality Environment

Wristband Sensing Device to Capture Physiological
Data. To measure workers’ physiological data in the road-
way work zone environment in VR, a wristband-type sens-
ing technology was used. An off-the-shelf wearable sens-
ing wristband, Embrace Plus, was used to collect workers’
PPG, EDA, and ST signals [28]. These were recorded si-
multaneously at the highest recording rate (PPG at 64 Hz
and EDA and ST at 4 Hz).

Leaf Blower, Tablet, Warning Watch, and Camera for
Video recording. Participants wore a Samsung Galaxy
Watch, as shown in Figure 2(a), that was used to deliver
haptic warnings. The warnings were administered using
the Tizen Native framework. Additionally, the participants
used an Amazon Fire Tablet, as shown in Figure 2(c), to
take pictures of a clogged storm water inlet (light level
activity) and a WORX WG509 12Amp leaf blower to clear
the leaves (medium level activity).

3.3 Experiment Procedure

The experiment involved a carefully structured sequence
of activities to ensure a comprehensive and ethical ap-
proach to the research. First, the nature of the study, its
goals, and the participants’ roles were explained to the vol-
unteers. Following the consent process, administrators of
the experiment explained the objectives and ensured that
the participants clearly understood what was expected of
them throughout the study. The experiment was designed
to be completed within a reasonable time frame, with a
maximum duration of up to half an hour per session.

The participants were tasked to replicate real-world sce-
narios commonly encountered in roadway work zones.
The focus was on taking pictures of the clogged inlet
and removing obstructions from the same. To design the
study, existing literature [29, 24] that discusses the in-
fluence of physical activity, intensity, and cognitive load
on worker’s stress was utilized. Based on this knowl-
edge, an obstruction removal task requiring participants to
engage in higher levels of physical exertion than routine
inspection of roadways was developed. The task began
with participants capturing pictures of the clogged drain
and then, as a subsequent task, activating the leaf blower
and directing it towards the obstructed drop inlet within
the virtual environment. As they did so, the virtual real-
ity environment featured a carefully designed photograph
capture with sound on the tablet. On the subsequent task,
the blowing effect with a leaf blower sound effectively
cleared the leaves positioned on top of the drop inlet. This
dynamic and interactive task continued until all necessary
warnings were delivered, and the administrator signaled
the completion of the task.

The developed virtual work zone is depicted in Figure
2(c). To enhance the realism and interactivity of the study,
the model uses a mixed-reality interaction for this experi-
ment. This approach allows the participants to simultane-
ously engage with physical objects in the real world and
virtual objects within the virtual environment.

3.4 Participants

The study utilized data from 18 out of the 22 partici-
pants. The removal of the data for 4 participants was due
to a technical challenge in recording and synchronizing
physiological data from the study. Out of the final count
(N=18), the average age of the participants was 28.27
years. Five participants did not have work experience,
while the remaining 13 had an average work experience
of 3.92 years (SD =4.78). The average duration for all the
participants to complete the medium and light-intensity
tasks was 1 minute 42 seconds and 1 minute 59 seconds,
respectively.
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3.5 Physiological Data Analysis

The Heart Rate Variability (HRV) features were com-
puted from the interbeat interval data (IBI) as depicted
in Figure 3 captured through the Empatica Embrace Plus
device [28]. The features span across different time, fre-
quency, and nonlinear domains. Using the pyHRV [30]
package in Python, features such as HF and RMSSD were
calculated across these domains for each participant dur-
ing the study. It is important to note that certain computed
features, like LF, might not be suitable for short-term data
collection, prompting a focus only on features applicable
to shorter timeframes. Additionally, for Electrodermal
Activity (EDA) analysis, denoising of EDA signals from
the Empatica Embrace Plus involved using a Butterworth
filter with a low cutoff frequency of 1.5 Hz [5].

Furthermore, a Hampel filter was utilized to elimi-
nate outliers in the physiological data, following Allen’s
method [31], which replaces spikes with the median value
of neighboring signals. Subsequently, the modified signal
was processed using the Neurokit 2 package [32]. This
package allows for signal decomposition into tonic and
phasic components and facilitates the computation of var-
ious Electrodermal Activity (EDA) features, including the
count of phasic skin conductance responses and the skin
conductance level (SCL). The study then compared the
number of SCR peaks among different participants and
conditions.

A paired t-test was used to compare heavy and light
activity across all participants. Additionally, parame-
ters like mean-NNI, mean-HR, std-HR, SDNN, RMSSD,
NN50, PNN50, and the number of SCR Peaks were ana-
lyzed to draw inferences and conclusions from the model.
RMSSD, calculated as the square root of the mean squared
differences between successive NN intervals, stands as
one of the most frequently utilized measures in the time
domain. NN50 signifies the count of interval differences
greater than 50 milliseconds between successive NN inter-
vals, while pNN50 is the proportion calculated by dividing
NN50 by the total count of NN intervals. Additionally, the
Blood Volume Pulse (BVP) captured by the PPG sensor
stands as a primary output. This BVP data shares a strong
correlation with Interbeat Interval (IBI) data, which rep-
resents the time lapse between individual heartbeats. It is
to be noted that the IBI information stems from processed
PPG/BVP signals from the Embrace Plus wristband, uti-
lizing an algorithm that effectively eliminates erroneous
peaks caused by noise in the BVP signal.

4 Result and Discussion
HR, HRV, and HF-HRV: The comparison of the mean

heart rate over the two activities (light and moderate) was
conducted using a paired t-test to assess the potential dif-

Figure 3. Interbeat Interval (IBI) defined as the time
interval between two fiducial points on the diastolic
pulse wave for the BVP signal

ferences between the two work scenarios. The paired t-test
revealed a p-value of 0.0729 with a confidence level of 90
percent, suggesting a significant difference between these
two activities. Participants’ mean HR (beat per minute)
when performing the light and moderate activities were
100.35 and 104.29 bpm, respectively. Figure 4(a) shows
the distribution of the mean HR. The lower mean heart
rate in light activity can be associated with decreased dis-
tractions due to external stimuli. Since the leaf blower
is heavier and noisier than the tablet, the workers could
not pay attention to the environment. Similarly, we com-

Figure 4. (a) Mean Heart Rate and (b) Heart Rate
Variability of Moderate and Light Activity

pared the heart rate variability over the two activities using
a paired t-test to assess the potential differences between
the two activities. The paired t-test revealed a p-value of
0.1070, suggesting a confidence level of approximately 90
percent. The mean HRV of the light and moderate activity
level were 36.06 and 38.22 bpm, respectively. Figure 4(b)
shows the distribution of the HRV. A decrease in heart rate
variability (HRV) indicates a reduction in the adaptabil-
ity and responsiveness of the autonomic nervous system.
This can be associated with an increase in stress when
participants performed moderate activity.

Another interesting finding from HRV is in the pNN50
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and NN50 features. The paired t-test revealed a p-value
of 0.7349 and 0.0257, respectively. The NN50 with a
confidence level of 95 percent, suggesting a significant
difference between these two activities. The moderate ac-
tivity recorded a lower mean NN50 compared to the light
activity. Figure 5(a) and (b) shows the distribution of the
HRV. Both pNN50 and NN50 are used in HRV analysis to
assess the balance between the sympathetic and parasym-
pathetic (PNS) branches of the autonomic nervous system
[33]. Although in a low-intensity scenario, the pNN50
has no significant difference as compared to the moderate
intensity, lower pnni50 shows lower PNS activity during
moderate activity, revealing a higher workload level [34].
Comparing the HF-HRV across the light and moderate

Figure 5. (a) pNN50-HRV and (b) NN50-HRV of
Moderate and Light Activity

activity, the paired t-test shows a significant difference be-
tween them with a confidence interval of approximately
90 percent (P-value = 0.1025). The distribution of the
HF-HRV is depicted in the Figure 6(a). This parameter is
also associated with the parasympathetic nervous system.
Lower HF-HRV values are generally associated with more
stress [34] during moderate activity.

It should be noted that in this study, we used the Normal-
to-Normal Intervals (NNI) and Inter beat Intervals (IBI)
for the calculation of the HRV, which is a measure of the
variation in time between each heartbeat. However, the
intensity of physical workloads can also affect stress indi-
cators, and distinguishing between the effects of physical
workloads and mental stress on these indicators presents
a challenge due to their overlapping impacts. When the
body is subjected to varying levels of physical demand,
the HR increases, but it does not necessarily mean that the
body is under mental stress. A higher heart rate, generally
resulting from physical activity or stress, is associated with
lower HRV. This is because a faster heart rate reduces the
time between individual heartbeats, leaving less room for
variability. In this study, none of the workload scenarios
involved intense physical activities. The results were pre-
sented with the assumption that the variations between low
and medium physical activities will not have a significant
impact on stress indicators. This assumption was based on

the understanding that the influence of physical activity on
heart rate (HR) and heart rate variability (HRV) becomes
more pronounced under conditions of intense physical ex-
ertion.

EDA: The mean of SCR peaks associated with the
cognitive load of participants for the low-intensity and
moderate-intensity scenarios were 36.61 (SD=15.43) and
36.5 (SD=15.22), respectively. Also, the paired t-test
showed a p-value of 0.9778, suggesting that in a low-
intensity scenario, the mean of SCR peaks has no signifi-
cant difference as compared to the moderate intensity, as
shown in Figure 6(b).

Figure 6. (a) HF-HRV and (b) Number SCR Peaks
in Moderate and Light Activity

The findings revealed significant physiological differ-
ences between light and moderate activities, particularly in
HRV measures of HF, RMSSD, NN50, and pNN50, which
are used for assessing the autonomic nervous system’s bal-
ance. The moderate activity demonstrated a reduction in
HRV and a lower mean NN50, indicating increased stress
levels and a potential decrease in parasympathetic activity.
Furthermore, the analysis did not find significant differ-
ences in the low and moderate scenarios as measured by
the number of SCR peaks, suggesting that the type of phys-
ical activity may not impact cognitive stress indicators in
controlled conditions.

5 Conclusion
This study aimed to assess the stress levels experienced

by construction workers as they received warnings dur-
ing regular roadway work zone tasks, examining the ef-
fects within the categories of light or moderate-intensity
tasks. The experiment model used physiological signals
collected from a wristband-type sensing technology de-
vice while they carried out routine highway maintenance
work in a VR environment. Results from 18 participants in
the simulated work zone through a virtual environment in-
dicate that (1) workers had a significantly lower heart rate
variability and mean heart rate when they did medium-
intensity activity than low-intensity activity; (2) moderate
activity recorded a lower mean NN50 and pNN50 as com-
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pared to the light activity; (3) the HF-HRV across these two
activities show a significant difference between them; (4)
there are no significant differences between the SCR peaks
for the low and moderate activity scenarios. The human-
sensing stress recognition model introduced in this study
offers two significant contributions: (1) It incorporates
workers’ physiological characteristics to assess their stress
levels while receiving an AR-enabled warning through a
combination of audio, visual, and haptic signals. (2) It
further clarifies the relationship between worker stress,
workload, and activities that demand physical effort.

This study acknowledges a few limitations that should
be addressed in future research. Expanding the sample size
of participants to include a more diverse and larger popu-
lation would enhance the generalizability of the findings.
Moreover, the study did not explore the effects of gender,
race, age, and disability, areas which future studies could
consider to deepen the understanding of stress recognition
in varying demographics. Additionally, the use of head-
mounted VR displays may introduce motion sickness and
dizziness, potentially confounding stress measurements.
The varied backgrounds of participants, including their
AR/VR experience and onsite experience, could also in-
fluence the results, suggesting a need for subgroup anal-
ysis to reveal these effects. Furthermore, the experiment
was limited to tasks categorized as light and medium in
terms of activity level. Future research could benefit from
incorporating a broader range of tasks, including those
classified as heavy, to more thoroughly assess the impact
of workload and physical demand on stress levels.
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