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Abstract -
The applications of deep learning-based robust surveil-

lance are vital for improving safety at construction sites, with
closed-circuit television (CCTV) systems serving as a piv-
otal tool in achieving this goal. Despite the recent progress
in state-of-the-art deep learning models, the task of hazard
identification remains a persistent difficulty due to the com-
plexity of the working environment. This paper presents
a novel end-to-end pipeline termed “Image-to-Hazard” that
aims to address the disparity between individual single-model
predictions. The pipeline incorporates multimodal inputs
and uses logical reasoning to establish connections. The
pipeline integrates a model based on GPT architecture from
the OpenAI API, encompassing various tasks such as de-
tection, depth estimation, danger identification, and logical
reasoning. Firstly, an actual video dataset was obtained from
construction sites and annotated. Subsequently, customized
object detection models were trained and optimized. After-
ward, a thorough extraction of visual features was conducted
by utilizing pre-trained models for tasks such as semantic
segmentation and depth estimation. Subsequently, prompt
engineering was conducted to seamlessly include the input
of visual feature information, and these structures were in-
tegrated into OpenAI GPT-based models to enhance their
capacity for logical reasoning. As a result, a proposed ap-
proach showed its robustness in integrating the GPT-based
model and vision model for automated hazard identification
and management at construction sites.
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Safety Management

1 Introduction

Construction sites have constantly been identified as
one of the most hazardous work environments worldwide
[1]. According to the construction accident data from the
Republic of Korea, there were an average of 538 deaths
per year between 2010 and 2020 [2]. These fatalities

accounted for around 27.9% of all accidents across ten
different industries, making it the industry with the high-
est accident rate [2]. In 2021, the Occupational Safety and
Health Administration (OSHA) [3] recorded a fatality rate
of 12.3 deaths per 100,000 full-time equivalent workers in
the construction industry. It is essential to have a thorough
grasp of the various dangers involved, including falls, elec-
trocution, and exposure to hazardous materials, to improve
worker safety. Closed-circuit television (CCTV) cameras
are widely acknowledged as important tools for monitoring
safety on construction sites. CCTV cameras facilitate the
identification of possible dangers, surveillance of adher-
ence to safety protocols, and examination of incidents by
capturing visual evidence of actions. However, there is not
much research on synchronizing the multi-visions model
with NLP for logical reasoning. With the advancement of
the generative pre-trained transformer (GPT) model cur-
rently, the GPT model acts as a strong tool for combining
knowledge and providing insight into a given scenario [4].
Manual monitoring of large-scale CCTV channels in con-
struction applications can result in the failure to identify
potential hazards. The GPT model enables the identifi-
cation of hazards not only through visual information but
also from a linguistic perspective. Subsequently, the safety
report can be generated automatically. This study aims to
bridge the gap between separate single-model predictions
using multimodal connective logical reasoning, whereby
Image-to-Hazard, a novel end-to-end pipeline that uses
a GPT-based model from the OpenAI API, is proposed
for detection, depth estimation, hazard identification, and
logic reasoning for safety monitoring at construction sites.
The contributions of this study can be summarized as fol-
lows:

1. A novel end-to-end pipeline using a GPT-based
model from the OpenAI API is proposed for detec-
tion, segmentation, depth estimation, hazard identifi-
cation, and logical reasoning for safety monitoring at
construction sites.

2. Detection models are trained on real-life CCTV
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datasets.

2 Literature Review
Deep learning (DL) has been widely employed in di-

verse fields such as computer vision, natural language
processing, and robotics. Furthermore, deep learning
methods have demonstrated resilience in improving safety
surveillance at construction sites [1]. Integrating deep
learning algorithms into CCTV systems enhances the abil-
ity to identify and mitigate potential safety issues at build-
ing sites [5]. Deep learning algorithms provide a range of
approaches to improve safety monitoring using CCTV sys-
tems. As stated by [6], 400,000 photos are taken through-
out the construction stages. Furthermore, CCTV systems
are built at nearly every construction site and are con-
sistently employed to monitor the situation. Safety man-
agement, progress tracking, and quality inspections can
benefit from the use of high-resolution photos, videos,
and algorithms that rely on deep learning techniques. Ob-
ject recognition and tracking have garnered considerable
interest among various deep-learning approaches [7, 8].
Deep learning-based object detection can be categorized
into two main types: one-stage and two-stage detectors
[9]. Notable architectures in this field include Fast R-CNN
(fast region-based convolutional neural network) [10] and
YOLO (you-only-look-once) [11]. These two object de-
tection methods are used based on unique research aims,
taking into account the trade-off between accuracy and in-
ference time. Real-time detection is essential in monitor-
ing construction site safety using CCTV footage, requiring
a careful balance between accuracy and inference speed.
Some common applications of deep learning in construc-
tion site, such as: Nath et al. employed the YOLO ar-
chitecture [11] to create three distinct models for identi-
fying worker personal protective equipment (PPE). The
constructed models were verified using a dataset that was
created specifically for this purpose, called Picto-v3. The
technique, designed using the YOLO architecture for one-
stage detection, exhibited an inference speed of around 13
frames per second (FPS), which is close to real-time. Fol-
lowing that, several studies have endeavored to improve
the efficacy of the YOLO framework in monitoring safety
at building sites. Park and colleagues [12] enhanced the
YOLO architecture by incorporating an attention mecha-
nism, resulting in SOC-YOLO. This modification aimed
to enhance the detection accuracy of small and overlap-
ping worker images. SOC-YOLO is a technique that
employs advanced methods such as distance intersection
over union (DIoU), non-maximum suppression (NMS),
weighted triplet attention, expansion feature levels, and a
soft pool. It has proven to be effective in detecting small
and overlapping targets (workers) at complex construction
sites. When conducting studies with SOC-YOLO, the av-

erage precision (AP) for small items showed an increase
from 67.52% to 73.88% mAP for minute objects, and from
74.56% to 77.57% for overlapping objects. This demon-
strates the practicality of SOC-YOLO in safety monitoring.
Currently, the research paradigm is shifting from single-
model to multimodal development, highlighting the neces-
sity of considering the context of a given image or video
alongside object detection, as quantifying objects cannot
rely solely on a single model. By incorporating various
types of models, including detection, segmentation, and
depth estimation, it is possible to develop a context-aware
model that encompasses a broader understanding of the
visual data. Chern et al. [13] proposed modularized
context-aware safety monitoring for fall accidents. Us-
ing the CCTV far-field monitoring dataset YUD-COSAv2,
the approach involves training detection models and sub-
sequently combining them with segmentation and depth
map models to create a context-aware model. This model
takes the scenario into account rather than relying solely on
detection results, enabling a more informed and compre-
hensive inference of results. This model was able to dif-
ferentiate workers by height and could apply different PPE
compliance rules, whereby average precisions of 78.50%
and 86.22% were obtained, respectively. Overall, these
studies focus on single-model development, and the im-
provement is derived from improved datasets, customized
models, or ensemble models. However, a multimodal un-
derstanding of scenarios from input images or videos is
still lacking. Chen et al. [14] developed a framework
consisting of three modules for: (1) automated process-
ing of regulatory rules and transformation of sentences
into computable graph structure representations; (2) com-
bining two object detection and pose estimation models
to represent scene information; and (3) automated rea-
soning of hazard notification from the above two output
graphs. The proposed framework, which extracts safety
rules through feature engineering, was effective in iden-
tifying individuals operating a grinder. Khan et al. [15]
identified mobile scaffolding and workers using Mask R-
CNN. This study proposed a correlation-based approach
for mobile scaffold safety monitoring and the detection
of unsafe worker behaviors. Mask R-CNN was used to
classify and segment worker tasks and an object correla-
tion detection (OCD) module was used to detect unsafe
behaviors. Subsequently, safety rules were used to deter-
mine whether the scenario was safe based on the detection
results. The test results exhibited 85-97% precision and
recall for class-1 (safe behavior) and 91-65% precision and
recall for class-2 (unsafe behavior). An overall accuracy of
86-96% confirms the Mask R-CNN-based OCD module’s
applicability in the construction environment.
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3 Proposed Approach
This section describes the deep learning and self-

developed models used in the proposed approach. The
proposed approach is illustrated in Figure 1 and comprises
four major phases: data acquisition, model inference, syn-
chronization, and logic reasoning. During the data acquisi-
tion phase, an actual CCTV dataset is acquired and labeled
to train the detection model. The input image is then used
for inference in multiple types of deep learning models, in-
cluding object detection, and depth-map estimation. The
information from the detected objects is then synchronized
using multimodal synchronization modules. Finally, the
GPT-based model is used for hazard-scenario logic rea-
soning using the developed auto-generating prompt struc-
ture. Each phase of the proposed approach is essential to
contributing to the overall objective. The data-acquisition
phase ensures that the model has access to a representa-
tive, high-quality dataset. The inference phase enables the
model to recognize and categorize the objects within the
input image. The synchronization phase ensures that the
information regarding the detected objects is consistent
across models. The reasoning phase enables the model to
generate a logic-based hazard scenario that can be utilized
to prevent catastrophic events. The proposed approach is
a promising novel method for hazard detection and pre-
vention with the potential to improve worker and property
safety at construction sites.

Object Detection 
Models

Depth Estimation 
Model

Image from CCTV

Multimodal 
synchronization

Multimodal 
synchronization

GPTGPT

Prompt engineering

Logic reasoning

Low-level 
feature 

extraction

Synchronize results

Automatic hazard identification

Figure 1. Image-to-Hazard.

3.1 Object Detection Modules

A construction site is a complex environment contain-
ing numerous objects that must be detected and analyzed.

The focus of this study is to classify and identify primary
target objects on a construction site, including construc-
tion vehicles, workers, and signalman. The specific class
names are listed below.

1. Construction vehicle with eight classes (Excavator,
Dozer, Forklift, Dump Truck, Mixer Truck, Cargo
Truck, Scissor Lift, Crane).

2. Signalman detection with two classes (Worker, Sig-
nalman).

The exploratory data analysis is presented in Figure 2.
Numerous detection models can be used to detect these
objects. In this study, the state-of-the-art one-stage ob-
ject detector Yolov8X was used to train and finetune the
detection model. To enhance the diversity of the training
samples, the default data for training all the models in this
study were augmented using Yolov8. The augmentation
technique used was ”mosaic,” which combines four dif-
ferent training images into one in a mosaic-like pattern.
This approach helps to improve the variation and repre-
sentation of the training data. Subsequently, a unique
augmentation technique specific to YOLOv5, known as
’CopyPaste’, was employed to randomly select an object
from one image and paste it onto another, thereby enhanc-
ing the complexity of the image data. The model then
applied random affine transformations, including scaling,
shearing, and rotation, to the images. The ranges of these
transformations were predefined. Following these steps,
another YOLOv5 specific technique called ’MixUp’ was
used to blend two images and their labels to generate a new,
more complex image. Following ’MixUp,’ the mask in-
formation was removed from the data, and then a series of
augmentations from the Albumentations library were per-
formed. These transformations include techniques such as
Blur, MedianBlur, conversion to grayscale, and contrast-
limited adaptive histogram equalization, each applied with
a certain probability. The experiment was conducted using
CentOS Linux 8 with two GTX A6000 graphics processor
units, each with 48 GB of memory. The model was devel-
oped using PyTorch, based on the MMYolo [16] library.
The mean Intersection over Union (mIoU) was used to
evaluate the model. mIoU is a frequently used metric in
computer vision for evaluating the efficacy of object detec-
tion and segmentation algorithms. This metric quantifies
the amount of overlap between the predicted bounding
boxes (or segmentation masks) and ground truth bound-
ing boxes (or masks), indicating the accuracy of model
prediction.

Table 1 displays model detection performance for con-
struction vehicles and signalman datasets. In this study,
the mIoUs of small, medium, and large objects are con-
sidered in the analysis. Comparative studies with other
SOTA models were not considered because the objective

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

293



Excavator Dozer Forklift Dump Truck Mixer Truck Cargo Truck Scissor lift Crane
Class names

0

2000

4000

6000

8000

10000

12000

14000

16000

Nu
m

be
r o

f o
bj

ec
ts

16,635

1,855 1,801

8,786

2,677
2,071 2,338

4,973
4,105

449 441

2,163

707 542 584
1,251

Construction vehicle dataset

Train
Test

Worker Signalman
Class names

0

2000

4000

6000

8000

10000

12000

Nu
m

be
r o

f o
bj

ec
ts

11,822

4,210

2,974

1,053

Signalman dataset

Train
Test

Figure 2. Dataset class distribution.

of this research was to develop end-to-end multimodal
logic reasoning. Objects that occupy 0 to 1024 pixels (32
× 32 pixels) are considered ’small’; objects that occupy
between 1024 and 9216 pixels (32 × 32 to 96 × 96 pixels)
are considered ’medium’; and objects that occupy more
than 9216 pixels (96 × 96 pixels or larger) are considered
’large.’
The construction vehicle detection model revealed a sig-
nificant size-dependent performance, with smaller objects
proving to be more challenging for the model to detect.
The model exhibited a precision of 0.377 for small objects,
which increased substantially to 0.763 for medium objects
and peaked at 0.921 for large objects. This steep increase
suggests that the model is particularly adept at detect-
ing larger construction vehicles, possibly because of their
distinct high-contrast features that are easier to discern
at larger scales. The signalman detection model demon-
strated comparatively consistent performance across ob-
ject sizes, with precision measures ranging from 0.652
for small objects to 0.765 for medium objects, and then
slightly increasing to 0.838 for large objects. Unlike
the other models, this model did not show a steep size-
dependent performance gradient, which may be attributed
to the distinct characteristics of the signalmen, making
them easier to detect irrespective of their size. The dis-
crepancies in model performance across different sizes
and categories indicate strengths and limitations. These
models are currently more effective in detecting larger ob-
jects. Smaller objects prove to be a common challenge in

visualization, possibly because of their indistinguishable
features at smaller scales. This highlights the need for fur-
ther research to enhance the precision of object detection
models, particularly for small- and medium-sized objects.

Table 1. Detection model performance.
Model IoU=0.5:0.95↑

Small Medium Large
Construction vehicle 0.377 0.763 0.921
Signalman 0.652 0.765 0.838

3.2 Human Pose Estimation

The overlapping area of the upper body precludes the ex-
act location of the worker from being extracted if only the
bounding box from the object detection model is utilized.
In numerous instances, the bounding box of the detected
worker does not encompass the entire body; consequently,
the ankle coordinates cannot be estimated. For estimating
the ankle midpoint of the detected worker, the well-known
pre-trained model HRNet [17] utilizes keypoint extraction.
Figure 3 presents examples of the algorithm. The detected
person bounding boxes are extracted first, followed by the
application of a pose estimation model, to estimate all the
key points of the body. In some instances, ankle points
cannot be detected because of overlapping objects, and
the ankle midpoint is estimated using an estimation ratio
between upper body keypoint.
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Figure 3. Actual dataset.

3.3 Depth Estimation Module

Objects detected by a detection model can be extracted
from image coordinates without considering spatial infor-
mation. A monocular CCTV depth-estimation map can
contribute to spatial information analysis. Therefore, the
trained MiDaS [18] model was used to extract depth data
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from the CCTV video. Using the x and y coordinates
in the image and depth z, the Euclidean distance in three
dimensions can be estimated. As shown in Figure 4, the
depth estimation results from monocular CCTV were then
compared with the actual point cloud data from terrestrial
laser scanning (TLS). The four trained models were used
to compare the results. The MiDaS model finetuned on
NYUv2 dataset robustly estimated depth using the monoc-
ular CCTV image. In this study, the trained MiDaS, fine-
tuned on the NYUv2 dataset, was selected to estimate the
depth map at the construction site.

3.4 Prompt Engineering

For logical reasoning, GPT is used. Currently, GPT-
based models perform phenomenally in the natural lan-
guage processing (NLP) domain [4]. GPT-based models
are a type of large-language model (LLM) trained using a
technique called generative pre-training. GPT-based mod-
els are typically trained on a massive dataset of text and can
be used for a variety of NLP tasks, such as text generation,
translation, and question-answering. With this large-scale
dataset, the model can understand extremely complex text
structures and provide meaningful answers. Therefore, in
this research, GPT-based models were utilized for the anal-
ysis of hazard scenarios, using the extracted multimodal
visual information.
An important technique is “Prompt engineering”, which is
the process of designing and optimizing inputs (prompts)
to a model, such as GPT, in a way that maximizes the
quality and relevance of its outputs. This is a crucial part
of using AI language models because the way a ques-
tion or task is framed can significantly affect the model’s
response. Object detection models identify and classify
objects within images typically by providing a bounding
box around the detected object and a label indicating the

object. This output can be used as an input prompt for a
language model such as GPT for further analysis, reason-
ing, or narrative generation.
An ontology model can be used to define entities at a con-
struction site (such as workers, vehicles, and equipment),
their properties (location, PPE status, and moving direc-
tion), and the relationships between these entities. Once
the ontology model is developed, it can be used to generate
prompts for the GPT model.
Given:

• 𝐷 : the set of detected objects.

• 𝑑𝑖 : a detected object in 𝐷, which is a tuple
(𝑙𝑎𝑏𝑒𝑙, 𝑏𝑏𝑜𝑥, 𝑜𝑏 𝑗𝑒𝑐𝑡 𝑖𝑑, 𝑖𝑛 𝑑𝑎𝑛𝑔𝑒𝑟 𝑧𝑜𝑛𝑒, 𝑑𝑒𝑝𝑡ℎ, 𝑐𝑒𝑛𝑡𝑒𝑟 𝑝𝑜𝑖𝑛𝑡).

• 𝑃 : the set of object distances.

• 𝑝𝑖 : a pair of objects in 𝑃, which is a tuple
(𝑜𝑏 𝑗𝑒𝑐𝑡1, 𝑜𝑏 𝑗𝑒𝑐𝑡2, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒).

We define:

• A function 𝑓 (𝑑𝑖) to generate the description for a
detected object 𝑑𝑖 .

• A function 𝑔(𝑝𝑖) to generate the description for a pair
of objects 𝑝𝑖 .

Then, the function ℎ(𝐷, 𝑃) used to generate the sen-
tence for the GPT model is defined as

ℎ(𝐷, 𝑃) =
⋃
𝑑𝑖∈𝐷

𝑓 (𝑑𝑖) ∪
⋃
𝑝𝑖∈𝑃

𝑔(𝑝𝑖)

Algorithm 1 illustrates the conversion of visually de-
tected features into a GPT-based model.

Using the aforementioned ontology models, the gener-
ated prompt is then input into the GPT-based model for
logical reasoning.

4 Experiment and Discussion
This Section presents sample hazard scenarios and an-

alyzes the input and output of logical reasoning from the
GPT-based model. Currently, OpenAI supports API for
GPT-based models up to GPT4.
As shown in Figure 5 and Figure 6, after extracting ob-
ject information using detection models, such as draw a
danger area, provide a reason for danger area, estimate the
Euclidean distance in 3D between ”Normal Worker” and
”Vehicle,” extract depth and segmentation map. The GPT
model infers the hazard scenarios in this input image based
on three main questions, as follows:

1. Identify potential hazards between objects.

2. Detail the specific risks associated with these poten-
tial hazards.
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Algorithm 1 Generating descriptive sentences for object
detection

1: procedure format object info(obj)
2: if not obj[’in danger zone’] then
3: danger zone status← ’Not in’
4: else
5: danger zone status← ’In’
6: end if
7: info← format info(obj, danger zone status) ⊲

Formatting the information about the object
8: if obj[’is signalman’] then
9: append signalman info(info, obj) ⊲ Appending

signalman information if present
10: end if
11: return join info(info) ⊲ Joining all information into a

single string
12: end procedure
13: procedure format distances(distances)
14: descriptions← format pairwise distances(distances) ⊲

Formatting the pairwise distances
15: append safe distance info(descriptions) ⊲ Appending

safe distance information
16: return join descriptions(descriptions) ⊲ Joining all

descriptions into a single string
17: end procedure
18: procedure generate sentence(detected object info danger,

object distances)
19: object descriptions ← for-

mat all objects info(detected object info danger) ⊲
Formatting all object information

20: num objects← count objects(detected object info danger)
21: if object distances is not empty then
22: distances text← format distances(object distances)
23: base text ← format base text(num objects, ob-

jects text, distances text)
24: else
25: base text ← for-

mat base text no distances(num objects, objects text)
26: end if
27: additional text← format additional text()
28: return base text + additional text
29: end procedure

3. Highlight the safety management approach for reduc-
ing risks.

Considering the visual information extraction input, the
GPT4 model provides feedback regarding hazard scenarios
in a given image, as follows:

• Potential hazards: Object 1 (normal worker ) and Ob-
ject 5 (excavator): The normalized distance between
Object 1 and Object 5 is 0.159, which is less than
the safe distance threshold of 0.2. This indicates that
the worker is too close to the excavator. Object 4
(normal worker) and Object 5 (excavator): The nor-
malized distance between Object 4 and Object 5 is
0.275, which passes the safe distance threshold, but
is close enough to warrant attention.

• Analyze the ”Risks associated with these potential
hazards”: The primary risk in both of these scenar-
ios is injury due to the close proximity of workers
to heavy machinery. These injuries can occur in a

variety of ways, such as: (1) Being struck by mov-
ing parts of the machinery (e.g., the bucket of the
excavator). (2) Being caught between machinery and
another object. (3) Slips, trips, or falls due to uneven
or unstable ground near the machinery.

• Safety management approach for reducing risks.

Clearly, with multimodal inference, different aspects such
as worker type, vehicle name, location, and 3D distance
between objects, are used to extract visual information.
Thus, the GPT model can perform logical reasoning much
more effectively. The construction site is a complex en-
vironment. Without a tailored training model and consid-
ering all possible hazards, the pretrained single-detection
model can meet the challenge of understanding context-
aware scenarios.

Input image Danger area

Detected objects Depth estimation

Object relationships

Figure 5. Step-by-step model detection.

In Figure 7 and 8, the report identifies potential hazards
and risks in a construction site scenario, indicating close
proximity of workers to heavy machinery and an unstable
slope. Notably, Object 2 (normal worker) is dangerously
close to Object 7 (excavator), with a normalized distance
of 0.196, which is less than the safe limit of 0.2. Addi-
tionally, Object 3 (normal worker) is within the danger
zone, being close to an unstable slope. These situations
raise significant risks, including physical injury or fatal-
ity for Object 2, from possible contact with the excavator
and potential slope collapse hazards for Object 3. Sev-
eral safety strategies have been proposed to mitigate these
risks. These strategies include enforcing safe distances
between workers and machinery, particularly for Object
2; evacuating and restricting access to the danger zone
around the unstable slope where Object 3 is located; con-
tinuous site monitoring with the CCTV system, possibly
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Prompt

Logic Reasoning

Figure 6. GPT logic reasoning.

supplemented with automated alerts for danger zone in-
trusions; slope stabilization procedures; mandatory use of
PPE for all workers; and regular safety training sessions.
This integrated approach aims to enhance worker safety
and reduce accident risk.

5 Conclusion
This study addresses the challenges of identifying haz-

ards in complex and unpredictable construction site en-
vironments, with the support of advanced deep-learning
models. To overcome these obstacles, we propose a novel
end-to-end pipeline, Image-to-Hazard, designed to bridge
the gap between separate single-model predictions using
multimodal and logical reasoning. This pipeline integrates
detection, depth estimation, hazard identification, and log-
ical reasoning, by employing a GPT-based model from
OpenAI API for safety monitoring at construction sites.
A large-scale video dataset was obtained from actual con-
struction sites and labeled. Subsequently, a large-scale
dataset was utilized to train and optimize tailored object
detection models. Pre-trained models for semantic seg-
mentation and depth estimation were utilized to generate
a comprehensive visual feature extraction dataset. Visual
feature information was then integrated with prompt struc-
tures and input into OpenAI GPT-based models for logical
reasoning. In conclusion, this study demonstrated that
the Image-to-Hazard-Scenarios pipeline, which combines
multimodal data for context-aware hazard identification,
was successful in enhancing safety monitoring at con-

Input image Danger area

Detected objects Depth estimation

Object relationships

Figure 7. Step-by-step model detection.

struction sites. The method was validated using actual
CCTV footage, quantifying its performance and leading
to the development of a deployment procedure for its im-
plementation in practical construction site settings. This
finding underscores the significant potential of employing
integrated multimodal approaches in improving the safety
of complex working environments, such as construction
sites. Future research should focus on refining this pipeline
and exploring its applicability to other similarly complex
settings using real-time inference.
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