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Abstract –  

Off-site construction (OSC) is gaining significant 

attention due to its promising benefits, including 

reduced time, cost, and waste, along with improved 

quality, productivity, and safety. However, the 

dynamic nature of the production process (i.e., non-

typical process time) introduces challenges in OSC 

production line, such as: (i) bottlenecks: (ii) 

workstation idle time; and (iii) identification of an 

optimal production sequence. To leverage the full 

benefits of OSC, a superior production planning and 

scheduling optimization method become imperative. 

Therefore, this paper aims to compare the 

computational performance of the Genetic Algorithm 

(GA) and Particle Swarm Optimization (PSO) for 

optimizing OSC production schedule. The 

methodology consists of the three key steps, including: 

(i) data analysis; (ii) development of GA and PSO 

algorithms; (iii) implementation of both GA and PSO 

in a real-life wall panel production line in Edmonton, 

Canada. The results reveal that GA outperforms PSO 

in minimizing project completion time (PCT). 

Specifically, for 160 wall panels, the PCT using GA is 

6112 min, whereas with PSO, it is 6122 min. 

Conversely, PSO produces results more quickly than 

GA. For the same set of 160 wall panels, the model 

runtime is 17.97 sec for GA and 6.0 sec for PSO. The 

findings of this study offer valuable insights for 

production managers in selecting the most effective 

algorithm for optimizing production schedules. 
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1 Introduction 

Off-site construction (OSC) is a process in which the 

building components (e.g., wall, floor, roof) are 

fabricated in a controlled environment (i.e., factory) and 

then transport it to the site for assembly. The adoption of 

OSC is growing, as it is reducing construction time, 

waste, environmental impact while increase productivity, 

safety, and quality [1]. However, it is essential to achieve 

optimal efficiency in the production line, as most of the 

activities are performed within a factory environment. In 

practice, the process time for same type of building 

component (e.g., wall) within the same production line 

dynamically varies. For instance, in a wall production 

line, the process time for each wall panel is not uniform 

due to varying design parameters, such as wall length, 

height, thickness, number of studs, and the presence of 

doors and windows. Due to this non-typical process time, 

the production line encounters various challenges, such 

as: (i) struggling to identify the optimal production 

sequence; (ii) facing significant bottlenecks; and (iii) 

dealing with excessive idle time at workstations. To 

address these challenges, an optimal production schedule 

is crucial. Therefore, it is paramount to identify the best 

optimization algorithm specifically tailored for OSC. 

In this regard, limited research has been conducted to 

identify a superior schedule optimization algorithm, 

specifically tailored for OSC. For example, Altaf et al. [2] 

compared the optimization performance of PSO and 

simulated annealing (SA) in the event of OSC production 

line and found that PSO outperformed SA. Yazdani et al. 

[3] combined three metaheuristic algorithms, namely 

differential evolution (DE), imperialist competitive 

algorithm (ICA), and GA, to simultaneously minimize 

the duration and cost of precast production processes. 

They found that DE provides better result compared to 

ICA and GA. Lee and Hyun [4] used GA and simulated 

annealing (SA) to create an optimal production schedule 

for multiple projects. However, the literature reveals a 

gap in research regarding the identification of the 

superior optimization algorithm between GA and PSO, 

specifically tailored for OSC production lines. 

Therefore, the primary objective of this paper is to 

determine the superior optimization algorithm between 

GA and PSO for minimizing project completion time in 
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OSC. This research conducted through three key steps, 

such as: (i) data analysis; (ii) develop GA and PSO model 

for minimizing project completion time (PCT) and obtain 

optimal production sequence; and (iii) compare the 

computational performance of GA and PSO to determine 

best optimization algorithm for OSC. 

2 Literature Review 

This section presents a literature review on GA and PSO, 

as the primary focus of this paper revolves around these 

two algorithms. 

2.1 Genetic algorithm 

Genetic Algorithm (GA) draws inspiration from 

biological evolution as a search and optimization method. 

It initiates a pool of potential solutions, assesses their 

fitness for a specific problem, selects the top performers, 

and merges their characteristics through crossover, 

occasionally incorporating mutations. This cyclic 

procedure persists across numerous generations, striving 

to approach an optimal or nearly optimal solution. GA is 

renowned for its adaptability, proving effective in 

addressing intricate issues with extensive solution spaces, 

and finds widespread application in the domains of 

scheduling and optimization. In the literature, extensive 

research has been conducted on using GA for OSC 

schedule optimization. For example, Ko and Wang [5], 

Ko and Wang [6] developed a GA-based multi-objective 

optimization model to address the flow shop-sequencing 

issue in the manufacture of precast components (PC) 

while considering the buffer sizes between production 

stations. Nassar [7] used GA to develop an optimal 

schedule for reducing project duration and interruption 

durations in a linear project. However, this model may 

not be suited for OSC because the working process of 

linear projects (e.g., road projects) differs significantly 

from that of OSC projects (e.g., wood-based wall 

manufacturing). Fan et al. [8] used GA to find the optimal 

schedules for repetitive projects. They introduced a soft 

logic strategy (i.e., sequencing) to minimize project costs. 

Agrama [9] developed a multi-objective GA to minimize 

project duration, number of interruptions, and resource 

levelling for a repetitive project (i.e., a multi-story 

building). Yazdani et al. [3] combined three 

metaheuristic algorithms, namely differential evolution 

(DE), imperialist competitive algorithm (ICA), and GA, 

to simultaneously minimize the duration and cost of 

precast production processes. Hyun et al. [10] developed 

a multi-objective optimization model using NSGA-II to 

reduce production time and labour costs for a continuous 

modular unit production line. Zhang et al. [11] developed 

an NSGA-II model to solve the multi-objective 

optimization problem in off-site construction (i.e., 

precast production) schedules by considering the impact 

of disturbance events such as machine malfunctions, 

order modifications, and unexpected order insertions. 

 

2.2 Particle Swarm Optimization (PSO) 

The Particle Swarm Optimization (PSO) is an 

optimization algorithm inspired by the coordinated 

movement of bird flocks in nature. In PSO, a group of 

particles traverses a search space to identify an optimal 

solution for a given problem. Each particle adapts its 

position by considering both its individual experience 

and the collective experience of its peers, all with the goal 

of discovering the most favourable solution. Several 

researches have been conducted on PSO for optimizing 

OSC and flow shop schedule. For example, Tasgetiren et 

al. [12] used PSO algorithm for minimizing the 

makespan and total flow time for the permutation flow 

shop sequencing problems. Guo et al. [13] developed a 

modified PSO algorithm for obtaining the optimal 

production schedule by sequencing the manufacturing 

process. Koulinas et al. [14] created a PSO-based hyper-

heuristic algorithm to solve the resource-constrained 

project scheduling problem (RCPSP). This hyper-

heuristic serves as an upper-level controller for multiple 

low-level heuristics that navigate the solution space. 

Altaf et al. [15] combined a DES model with 

optimization using PSO to generate a more realistic 

schedule that captures the dynamics of the panel 

prefabrication process. However, this model may not be 

ideal for comparing its performance with other 

algorithms (e.g., GA) because it generates mean PCT. 

Zhang and Yu [16] developed a planning technique 

utilizing PSO algorithm to optimize the PC transport 

process. Hayat et al. [17] introduces the hybridization of 

the particle swarm optimization with variable 

neighbourhood search and simulated annealing to tackle 

permutation flow-shop scheduling problems.  

 

In summary, optimizing a production schedule in 

OSC is crucial for minimizing overall production costs 

and ensuring faster project delivery. However, previous 

studies primarily used either GA or PSO to optimize 

schedules in OSC. Despite the proficiency of both GA 

and PSO as optimization algorithms, a comprehensive 

investigation into determining a superior optimization 

algorithm specifically for OSC production lines remains 

unexplored. Accordingly, this paper aims to identify a 

best performing algorithm between GA and PSO 

explicitly for OSC. 

3 Methodology 

To fulfill the objectives of this paper, a research 

framework is summarized in Figure 1. The framework 

primarily consists of three procedures, such as: (i) 
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estimating process times from historical data; (ii) 

developing optimization models, including GA and PSO, 

specifically suited for OSC; and (iii) implementing and 

comparing the results of GA and PSO using a real-life 

wall frame manufacturing factory located in Edmonton, 

Canada. The process time for each component (e.g., wall 

panel) at every workstation, the number of workstations, 

and the number of panels to be produced in a given 

project are used as input. The criteria of this proposed 

framework involve one-panel flow (i.e., each workstation 

can only perform its tasks on one panel at a time) and the 

sequence (i.e., order) of workstations. In this respect, the 

optimization models are implemented using Python 

version 3.11.3. Moreover, the models are run on an 

Intel® Core™ i7 CPU with a processing speed of 3.40 

GHz. Simultaneously, their computational performance 

in terms of PCT and runtime is recorded. 

  
Figure 1. Proposed research framework 

3.1 Estimate process times 

 

The overall process to estimate the expected process 

times for each panel at each workstation using empirical 

data is shown in  Figure 2. In this respect, the process 

mainly consist of three phases, such as: (i) calculating 

labor productivity using Equation (1) and (2); (ii) 

developing histogram to obtain optimistic, most likely 

and pessimistic productivity because histograms provide 

a powerful and intuitive way to analyze and interpret the 

characteristics of a dataset, aiding in decision-making 

and drawing meaningful conclusions from the data [18]; 

(iii) calculating weighted average productivity using 

Equation (6) to incorporate probabilistic process time. It 

is important to note that before creating the histogram, 

the data were preprocessed to exclude outliers because 

outliers significantly influence the determination of 

realistic statistical parameters, such as mean, upper 

bound, lower bound[18]. Outliers refer to individual data 

points that deviate significantly from the overall dataset. 

Usually represented as individual points beyond the 

whiskers in a plot. In essence, if any data point is above 

the upper boundary or below the lower boundary, it is 

considered an outlier. It can be calculated using Equation 

(3)-(5). Finally, the process time for each panel at each 

workstation is estimated in accordance with Equation (2). 

 

Figure 2. Flow chart for data analysis 

 

 T = t*N (1) 

where, T = process time by one worker; t = process 

time by N number of workers; and N = number of 

workers. 

 P = A/T (2) 

where, P = labour productivity; and A = panel area. 

 

 IQR = Q3-Q1 (3) 

where, IQR= interquartile range; Q1= first quartile 

(i.e., median of lower half of data); and Q3 = third 

quartile (i.e., median of upper half of data). 

 Upper bound of data set = Q3+1.5*IQR (4) 

 Lower bound of data set = Q1-1.5*IQR (5) 

The weighted average productivity for each 

workstation is calculated using the optimistic, most likely, 

and pessimistic value of productivity using Equation (6). 

 Pavg = 
(O+4m+P

6
 (6) 

where Pavg = weighted average productivity; O = 

optimistic productivity; m = most likely productivity; and 

P = pessimistic productivity. 

3.2 Optimization model formulation 

The objective of this research is to find the best 

optimization algorithm between GA and PSO in terms of 

minimize the project completion time (PCT) and run time 
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in an OSC production line. The objective function is 

representing in Equation (7). 

 

 
Min C (Pi, Sj) = Min [max{C (Pi-1, Sj),  

C (Pi, Sj-1)}+Ti,j ] 
(7) 

where C (Pi, Sj) = PCT of ith panel at workstation j; C 

(Pi-1, Sj) = completion time of (i-1) th panel at workstation 

j; C (Pi, Sj-1) = completion time of ith panel at workstation 

(j-1); and Ti,j = process time of ith panel at station j. The 

wall panel production sequence is considered as the 

decision variables. Moreover, two types of constraints 

are considered, such as: (i) the wall panel must follow the 

sequence of workstation; (ii) each workstation should 

work on a single wall panel (i.e., one panel flow). 

3.2.1 GA model 

The process flow of minimizing PCT using GA is 

outlined in Figure 3. The process begins with the 

initialization of an initial population and each population 

is evaluated for its fitness based on Equation (7). After 

that GA generate optimum solution through selection, 

crossover, and mutation. In the selection process, 

population with superior fitness are chosen to form a 

mating pool. 

 

Figure 3. Process flow of GA 

 

In the crossover phase, a partially mapped crossover 

(PMX) strategy is utilized. This involves generating 

offspring solutions by selecting a sub-set of gene from 

one parent and replacing it with another parent. Through 

this genetic recombination process, offspring can get 

advantageous attributes from parents, potentially leading 

to improved solutions. As shown in Figure 4, the random 

mapping of genes J3-J6 in chromosome 1 (i.e., parent 1) 

interchange with the genes J6-J1 in chromosome 2 (i.e., 

parent 2) for crossover, resulting in the generation of 

offspring 1 (i.e., child 1) and offspring 2 (i.e., child 2).]. 

 

Figure 4. Illustration of crossover process 

Furthermore, to preserve population diversity and 

avoid premature convergence, the mutation operation is 

employed as an effective strategy. In this study, a two-

point swap mutation technique is utilized, where a 

random pair of genes (i.e., panels) within the 

chromosome is chosen, and their positions are swapped 

to generate offspring, forming the foundation for the 

subsequent generation. As shown in Figure 5, child 1 

exchanges the positions of genes J2 and J3, while child 2 

swaps the positions of genes J3 and J8, leading to the 

creation of new offspring. 

 

Figure 5. Illustration of mutation process 

 

3.2.2 PSO model 

The process flow of PSO is depicted in Figure 6, 

encompassing essentially six steps, including: (i) 

randomly generate initial no of particles where each 

particle represents a solution. For OSC scheduling 

problem, particle is a list of sequential panels; (ii) 

calculate the fitness value (i.e., PCT) for each particle; 

(iii) find local best position (i.e., chose a job sequence 

that provide minimum PCT between current and previous 

iteration) and global best position (i.e., chose the job 

sequence that provides minimum PCT among all the 

particle in current iteration); (iv) the iteration continue if 

it does not reached maximum number; (v) update the 

velocity of the particles as per Equation (8); and (vi) 

update the position (i.e., sequence of panels) for next 

iteration. 
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Figure 6. Process flow of the PSO algorithm 

 

 
Vi(t+1) = ωvi(t)+c1r1(p(t)(i,lb)-xi(t)+ 

c2r2(p(t)(gb)-xi(t) 
(8) 

where Vi
(t+1) = velocity of ith particle at (t+1) iteration; 

ω = inertia weight; vi(t) = velocity of ith particle at current 

(i.e., t) iteration; c1 and c2 = acceleration coefficient; r1 

and r2 = random numbers value between 0 and 1; p(t)(i,lb) 

= local best of ith particle at current iteration (i.e., t); 

p(t)(gb) = global best positionProceedings. 

4 Implementation and results 

The proposed scheduling method is applied to a light 

gauge steel (LGS) wall panel production line located in 

Edmonton, Canada, dedicated to manufacturing light 

gauge steel (LGS) wall panels for both commercial and 

residential building. The production line primarily 

consists of three workstations, such as: (i) assembly 

station where the required number of studs and tracks are 

prepared based on the shop drawings; (ii) framing station, 

where the framing components are securely fastened 

together to form wall panels; and (iii) sheathing station 

where the drywall is installed on framed components. In 

this paper, the process time for 166 wall panels is 

collected and analysed. However, for illustrative 

purposes, the collected data for 10 panels are shown in  

Table 2. Subsequently, Equations (1) and (2) are 

employed to calculate labour productivity for each panel. 

For example, the area of panel E831 in Table 2 is 94 ft2, 

it takes 41 minutes to complete by 2 workers at assembly 

workstation. Therefore, the process time by one worker 

is 82 minutes, and labor productivity is calculated as 

94/82= 1.15 ft2/min. Similarly, productivity for panel 

E831 at the framing and sheathing workstations is 0.94 

ft2/min and 1.57 ft2/min, respectively. 

From the data analysis, it is evident that productivity 

is not consistent, meaning it varies from panel to panel. 

To address this variability in productivity, a weighted 

average productivity is adopted to determine the 

expected productivity for each workstation. To derive the 

optimistic, most likely, and pessimistic productivity, 

histograms are constructed for each workstation using 

166 empirical data points. As illustrates in Figure 7 the 

framing station's diverse productivity metrics, with 

optimistic, most likely (i.e., median), and pessimistic 

values of 0.16 ft2/min, 1.15 ft2/min, and 3.19 ft2/min, 

respectively. Similarly, Figure 8 shows the sheathing 

station’s productivity statistics, showcasing optimistic, 

most likely, and pessimistic values of 0.14 ft2/min, 0.79 

ft2/min, and 2.29 ft2/min, respectively. As shown in 

Figure 9 , the nailing station’s productivity spanning 0.14 

ft2/min (optimistic), 0.71 ft2/min (average), and 1.91 

ft2/min (pessimistic) The weighted average productivity 

for the assembly, framing, and sheathing workstations is 

calculated as 1.33 ft2/min, 0.93 ft2/min, and 0.82 ft2/min, 

respectively. These productivity values are employed to 

calculate the process time for each panel at each 

workstation, as presented in  Table 1 

Table 1. Estimated process time at each workstation 

Panel 

Id 

Panel 

 area 

(ft2) 

Process time (min) 

Assembly Framing Sheathing 

E 1099 160 60 57 65 

E 819 111 42 40 45 

E 561 132 50 47 54 

E 767 130 49 46 53 

E 779 130 49 46 53 

E 861 130 49 46 53 

E 1140 136 51 49 56 

E 807 136 51 49 55 

E 1129 92 35 33 37 
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Table 2. Sample empirical data for 10 panels 

Panel  

Id 

Panel 

area  

(ft2) 

Assembly station Framing station Sheathing station 

Process 

time  

(min) 

No 

 of 

 

workers 

Productivity 

 (ft2/min) 

Process 

time 

(min) 

No of 

 

workers 

Productivity  

(ft2/min) 

Process 

time 

(min) 

No  

of workers 

Productivity 

 (ft2/min) 

E 831 94 41 2 1.15 25 4 0.94 20 3 1.57 

E 789 151 65 1 2.32 110 3 0.46 100 3 0.50 

E 780 132 48 1 2.75 40 3 1.10 85 3 0.52 

E 809 56 38 2 0.73 49 3 0.38 24 3 0.78 

E 814 109 65 2 0.84 60 3 0.61 72 3 0.50 

E 820 62 26 2 1.19 32 3 0.64 54 3 0.38 

E 790 22 15 2 0.74 11 2 1.00 13 3 0.57 

E 651  136 35 2 1.94 55 2 1.23 47 2 1.44 

E 622 69 15 2 2.31 59 2 0.59 33 2 1.05 

E 630 45 20 2 1.12 29 2 0.77 40 2 0.56 

 

Figure 7. Histogram for assembly station 

 

Figure 8. Histogram for framing station 

 

 

Figure 9. Histogram for sheathing station 

4.1 Application of GA 

To automate the implementation of GA and enhance 

the efficiency of minimizing PCT through panel 

sequencing, a Python-based script has been meticulously 

developed. The adopted GA parameters are follows: (i) 

population size 20; (ii) mutation rate 0.1; (iii) crossover 

rate 0.8; (iv) number of generations 2500; and (v) number 

of panels 50. As shown in  Figure 10, following 1600 

iterations, the calculated optimum PCT is 2196 minutes. 
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Figure 10. PCT during each iteration using GA 

4.2 Implementation of PSO 

The objective of this PSO-based optimization model 

is also to minimize the PCT by sequencing the wall panel 

production. The selected parameters for running the PSO 

model are as follows: (i) number of wall panels - 50; (ii) 

number of particles - 20; (iii) number of iterations - 500; 

(iv) inertial weight - 0.5; (v) cognitive weight - 2.0; and 

(vi) social weight - 2.0. As shown in Figure 11, the 

convergence achieved at 150 iterations and, the PCT 

reduced from 2237 min to 2226 min. 

 

Figure 11. PCT during each iteration using 

PSO 

4.3 Comparison of results 

To identify the best-performing algorithm between 

GA and PSO for minimizing PCT in OSC, 13 sets of wall 

panels are selected, such as number of wall panel 

10,20,30,40,50,60,70,80,90,100,120,140 and 160. As 

shown in Figure 12, the performance of GA for 

minimizing PCT is outperformed PSO. For instance, the 

minimum PCT for 160 panels is 6112 min using GA, 

whereas with PSO, it is 6122 min. Moreover, the run time 

at each iteration is record for both GA and PSO. As 

shown in Figure 13, the run time for GA is relatively 

higher than PSO. For example, the runtime for 160 panels 

using GA is recorded as 17.97 sec, whereas with PSO, it 

is 6.0 sec. 

 

Figure 12. Comparative PCT for GA and PSO 

 

Figure 13. Comparative run time for GA and 

PSO 

5 Conclusions and future works 

In this study the performance of GA and PSO for 

minimizing PCT in OSC production schedule is 

evaluated. The proposed methodology employed GA, 

and PSO to optimize OSC production schedule in terms 

of PCT and run time. In the data analysis stage, a 

histogram is developed to estimate expected productivity 

for each workstation. The proposed research framework 

is implemented on a light gauge steel (LGS) wall panel 

production line at Edmonton in Canada. Each model (i.e., 

GA and PSO) is implement in 13 sub-sets of wall panels 

to minimize the PCT. The results demonstrate that GA 

provides better results than PSO for minimizing PCT. For 

instance, the PCT using GA is 6112 min, while it is 6122 

min using PSO for 160 wall panels. In contrast, PSO 

generates output relatively faster than GA for the same 

set of 160 wall panels. For example, the model run time 

for GA is around 11.97 sec, while it takes around 6 sec 
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for PSO.  

The original contribution of this research assists 

planners in choosing the best optimization algorithm, 

eliminating the need for trial and error with multiple 

algorithms. While this study yields satisfactory outcomes, 

it is limited to the comparison between two algorithms. 

To address this limitation, in the future, the proposed 

methodology can be further expanded by comparing 

these two algorithms with other search algorithms, 

including Simulated Annealing, Ant Colony, and Tabu 

Search algorithms, to find the best performing algorithm 

for this type of optimization problem, specifically in the 

context of OSC. 
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