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Abstract  

Emissions from machinery that is primarily fueled 
by Diesel represent a significant environmental 
concern in the construction sector. Traditional 
monitoring methods, including both Simplified and 
Portable Emissions Measurement Systems (SEMS 
and PEMS, respectively) encounter practical and 
financial constraints when deployed extensively 
across the diverse machinery types. This paper 
introduces a novel approach on predicting emissions 
and fuel consumption by leveraging a priori recorded 
emissions data from non-road mobile machinery 
(NRMM) in a Discrete Event Simulation (DES) as 
part of a Digital Twin Platform (DTP). Focusing on 
three types of construction machines (drilling rig, 
loading excavator, and hauling dump truck) the DES 
models their basic operations on a DTP purposed for 
earthwork and foundation activities for a high-rise 
building project in Denmark. With the input of 
different configurations (e.g., machine quantity and 
type, location,), DES allows for the prediction of 
emissions and work output. Verification of the 
approach occurred in a field-realistic outdoor 
construction laboratory setting while the validation 
was demonstrated on a construction site. The results 
provide an efficient and economical avenue for  
monitoring emissions related to construction 
equipment operations. Beyond the environmental 
benefits, the proposed method generates knowledge 
that can supply construction managers with critical 
insights into performing proper resource leveling. 

 
Keywords – 

Construction equipment emissions, Digital Twin, 
Discrete Event Simulation, Site layout optimization, 
Non-road Mobile Machinery, Portable Emission 
Measurement System, Prediction and avoidance. 

1 Introduction 

Construction machinery is mainly powered by diesel 
fuel and contribute substantially to Greenhouse Gases 
(GHG) and thus, global warming [1]. Heavy construction 

machinery, often referred to NRMM, accounts for about 
half of all CO2 (Carbon Dioxide) emissions produced by 
the construction industry in Denmark in 2004 [2]. 
Besides CO2, NRMM produces Nitrogen Oxides (NOx), 
Carbon Monoxide (CO), Particulate Matter (PM), and 
Hydrocarbon (HC) pollutants that are dangerous to 
human health and the environment. Specifically, off-road 
diesel equipment is identified as the third largest 
contributor to NOx emissions (14.5%) and the second 
largest contributor to PM emissions (24.3%) among 
mobile vehicles [2]. 

The European Union (EU) applies regulations for 
threshold levels of emissions from NRMM and to that 
end, various sensor technologies are set up to measure 
emission levels during the construction phase [3]. At a 
national level, the Danish Government has set a target for 
the green transformation of the built environment. It aims 
to achieve the goal of carbon neutrality by 2050 [4]. 

This is where Digital Twin (DT) concepts come into 
play that integrate, among other data, Building 
Information Modeling (BIM), construction schedule (4D 
component), Internet of Things (IoT, incl. data from 
sensors communicated wirelessly to a DTP and being 
processed for further analysis), and user interfaces (i.e., 
UI dashboards). Yet, a challenge of DTs in construction 
seems to be the reliable gathering of accurate field data 
and connecting the different data from the various 
sources for further reasoning in knowledge-based 
representations, for example, as part of high-fidelity 
information that is already available in 4D BIM models. 

In essence, the further purpose of a DT is “a virtual 
representation of an object or system that spans its 
lifecycle, is updated from real-time data, and uses 
simulation, machine learning, and reasoning to help 
decision-making” [5]. While the virtual models of DTs 
can monitor real-time data from SEMS [6] and PEMS [7], 
DTs may also access data recorded in the past that assist 
in generating further insights from the data-driven 
simulations [8]. In construction simulations newly 
created knowledge benefit decision making, for example, 
reducing fuel consumption in construction logistics [9]. 

However, an open research question is: How can 
these individual components (4D BIM, IoT/sensors, DTP 
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incl. UI) be applied together in a meaningful way that 
can demonstrate the environment benefits of reducing 
construction equipment emissions while increasing output? 

The following sections explain the background, the 
methodology, and preliminary findings how data from 
heavy construction equipment involved in creating 
foundation piles, loading and hauling the excavated earth 
material off site are used in predictive simulations for 
construction site operations emissions assessment. 

2 Background 

This section is subdivided in a few very brief 
reviews of some of the relevant topics an interested 
reader might want to be familiar with, for example, the 
key alternatives to (a) gather live construction equipment 
emissions data (2.1-2.3) and (b) conduct basic 
construction equipment emissions simulations (2.4). 

2.1 Portable Emission Measurement Systems 

Portable Emissions Measurement Systems (PEMS) 
have been used for several decades, gaining significant 
traction in the late 1990s and early 2000s. These systems 
are designed to measure and analyze emissions from 
various sources like road vehicles and NRMM. There is 
a diverse range of PEMS available in the market. 
Therefore, they vary in measurement capabilities, 
features, and compatibility with different machines or 
equipment. PEMS systems consist of sensors, analyzers, 
and data acquisition systems that can be transported and 
installed for on-site measurements. The adoption of this 
technology grew as researchers recognized the 
importance of obtaining accurate emissions data. They 
sought data from real-world field experiments, with 
machines working in their operational settings, going 
beyond traditional laboratory testing. PEMS find 
applications in research, emissions monitoring, and other 
activities related to emissions control and environmental 
studies [7, 9, 10]. Noteworthy, PEMS is supported by 
both the U.S. Environmental Protection Agency (EPA) 
and the European Environment Agency (EEA) for 
measuring emissions.  

2.2 Telematics 

Telematics provides an advanced monitoring 
method widely employed in the automotive industry to 
track assets like cars, trucks, and construction equipment. 
It utilizes Onboard Diagnostics (OBD), often in 
combination with Global Navigation Satellite Systems 
(GNSS) technology to record and map a vehicle’s 
movement, providing valuable data for fleet tracking and 
management. End-user access to telematics data, if 
granted, further enables efficient monitoring of various 
vehicle aspects, such as speed, idling, fuel consumption, 

tire pressure, etc. This is feasible through a sophisticated 
onboard computer in the vehicle, capable of capturing 
comprehensive information [11]. 

2.3 Simplified Emission Measurement Systems 

Compared to PEMS, a Simplified Emission 
Measurement System (SEMS), as used in [2] and [6], 
comes at a much lower expense (a few thousand Euros). 
SEMS is a portable emission meter and can be applied to 
several means of transportation, including NRMM [12]. 
Due to its small size and the less time-consuming 
installation, usually less than 15 minutes, it is suitable for 
simplified measurements when equipment operations are 
not to be interrupted for a long time or inspections, for 
example, by regulatory authorities. Due to the lower 
complexity, fewer experts are required to mount the 
system than PEMS, simplifying its installation process 
and use overall [13]. Yet, [2, 6] pointed out that the latest 
released emission standards from the EEA for NRMM 
make it difficult if not impossible for some of the 
relatively inexpensive sensor components in SEMS to 
record the ever-smaller emission levels very accurately. 

2.4 Discrete Event Simulations 

Discrete Event Simulation (DES) involves modeling 
systems where the state variable undergoes changes at 
specific time points [14]. It has found widespread 
adoption as an effective technique for comprehending 
system behaviors and assessing different operational 
strategies. Since the inception of the CYCLic Operations 
Network (CYCLONE) [15] has been instrumental in 
crafting computer-based simulation models for 
construction projects, aimed at analyzing and optimizing 
their performance [16]. Following CYCLONE's 
introduction, a multitude of construction simulation 
systems emerged, including STROBOSCOPE [17] and 
RiSim [18], and SDESA [19]. DES was also 
implemented for estimating construction emissions by 
investigating load factors and based on various 
equipment activities [20]. Besides other tools, SimPy 
emerged as an open-source library that includes 
components enabling DES workflows efficiently [21]. 
These simulation systems offer valuable tools for project 
managers to replicate the dynamic interactions between 
resources and activities, facilitating comprehensive 
performance evaluation and the generation of insights. 

3 Research Method 

The employed Digital Twin Platform (DTP) plays a 
pivotal role in gathering and streaming the raw 
machinery data via IoT-sensors (Internet of Things) to an 
accessible cloud storage space. There, a pre-processing 
module filters the data first for erroneous elements and 
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then processes it online for emissions reasoning by 
applying simplified mathematical formulas. Finally, the 
resulting information is transformed as input values into 
a DES simulation model. This model finds out how 
environmental and economical the construction 
operations process can be. Subsequently, a User Interface 
(UI) presents the results to the end user in a visual and 
accessible dashboard format in commercially available 
web browsers. As shown in Figure 1, the designed 
technical components in this workflow seamlessly 
incorporate some manual user input, fostering a 
collaborative and interactive working environment for 
easily refining the required parameters to run the DES, 
which predicts previously not available outcomes.  

Multiple steps are involved in the workflow of data 
recording, communication, processing and visualizing: 
(1) Recording raw equipment emissions and location data 
(latter, if available), (2) wireless communication to cloud 
storage space via mobile networks, (3) processing raw 
data streams online by applying simplified mathematical 
conversions, (4) reasoning by applying basic thresholds 
to detect emission breaches that violate regulations, (5) 
linking the results to parameters of already existing 
elements of 4D BIM models, (6) taking this 
automatically generated information and further manual 
input as values to run the DES, (7) visualizing the results 
as part of a dashboard in the DTP.  

 

 

Figure 1. Workflow of acquiring, communicating, 
processing, and populating emission information 
to the Digital Twin Platform (DTP). 

For demonstration, the method is applied to a realistic 
but highly simplified use case involving two alternative 
construction plans of up to two drilling rigs purposed to 
create reinforced concrete piles for a foundation wall, one 
excavator loading the excavated earth material from the 
drilled piles into at least one dump truck that hauls the 
material off the building site.  

4 Implementation 

4.1 Live and online emission datasets gathering 

Emissions data for 3 different NRMM were collected. 
The drilling rig, Bauer BG55, collects the emissions data 
via PEMS on the (final demonstration) high-rise building 

construction site for 1 full workday (7 effective work 
hours). Mobilization of PEMS took several hours. Due to 
several unknown false data readings of NOx emissions, 
the dataset was manually filtered and cleaned before used 
in the further analysis. More information on the recording 
of emissions data of the drilling rig (2 hrs.) is here [3]. 

For the excavator, Caterpillar 325F, a structured 
experiment took place at another location, a realistic 
outdoor construction laboratory setting. This was 
necessary since only one PEMS was available for testing 
at the final demonstrator site. However, the same PEMS 
device (AVL492) was utilized for recording 1.5 effective 
working hours of the excavator’s emissions, like NOx and 
CO2. The excavator operated in different working modes 
including loading and idling, during cold and hot starts.  

All machines operated on Diesel fuel. The utilized 
PEMS in all tests (drill rig and excavator) logged data at 
high frequency (1 Hz) via the CAN-bus system. Such 
data can also easily be exported as CSV (Comma 
Separated Values) file for potential other post processing.   

Since no dump truck was readily available at either 
location in Denmark, the PEMS data used for a dump 
truck came from an online data repository.  Chosen was 
a 10-ton dump truck, Isuzu FTR850 AMT. The PEMS 
device in the study that collected the emission data [22] 
was a SEMTECH®DS unit recording multiple trips on 
urban routes in South Africa at a rate of 1 Hz. While some 
risk is potentially involved in procuring data over the 
internet for our research purposes, the data set was 
previously published in a peer-reviewed academic outlet 
and although the recording location was not identical to 
the climate in Denmark, still deemed trustworthy. 

4.2 Datasets processing into averaging heat maps 

After dataset gathering, we proceeded with assessing 
the impact of engine speed and engine load on the 
emissions within the context of the machine being in 
several modes, incl. direct work, supporting work, and 
other works, including idling.  

First, we removed data points where the engine speed 
was below 800 rpm, as it is unlikely for engines to be 
working at such speeds in practical scenarios. Based on 
observation and preliminary analysis by checking the 
distribution of engine speed value when the machine is 
idling, we defined the idling mode as when engine speed 
is between 800 rpm and 900 rpm. We calculated the 
average value for the emission rate (g/s) of CO2 and NOx 
and the consumption rate (g/s) of fuel at the idling mode, 
which is then used in DES for simulating the emission 
and consumption of idling machine as shown in Table 1. 

For other working modes, the observation heat map 
of engine speed and engine load is created. The approach 
focused on creating informative heatmaps for detecting 
the machine’s operating mode automatically based on, 
specifically, its engine speed, engine load, and emissions 
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values. The first step included extracting the relevant data 
from the dataset and then dividing its engine speed and 
engine load into sections to construct a more detailed grid 
for the heat map. The process proceeded otherwise with 
calculating the average NOx emissions within each grid 
element by applying certain filtering conditions to the 
dataset. The same process was used for the CO2-values 
and for the fuel consumption. Additionally, we visualized 
the resulting information data as a heat map, using a color 
scheme to represent average emissions, and included 
annotations for clarity. Axis labels and a title provide 
context, and a color bar assists in the interpretation. 
Given the space restrictions in this paper, Figure 2 
presents the calculated heat maps for the drill rig only.  
Figure 2 (a) shows the percentage of engine load and 
speed of the drilling rig when it is working in drilling 
mode. Figure 2 (b-d) shows the CO2 and NOx emission 
rate as well as Fuel consumption rate when the drilling 
rig is working at different sections of engine load and 
speed. Figure 2 (b-d) is created from the observation on 
all working modes and reflects the correlation between 
emissions and engine speed and load, which are thus also 
used for the simulation of other working modes.  

Table 1. Average NOx and CO2 emission and FUEL 
consumption for idling equipment. 

Equipment 
NOx 

(10-3 g/s) 
CO2 

(g/s) 
Fuel 

(g/s) 
Drilling rig  

Bauer BG 355G 
13.80 5.38 1.71 

Excavator 
CAT 325F 

3.77 2.20 0.50 

Truck 
Isuzu FTR850 AMT 

0.87 1.21 0.38 

 

 

Figure 2. Heat maps for Bauer 355G drilling rig 
when it is in the drilling mode for 3 hours of 
observed work. 

 

Figure 3. Heat maps for CAT 325F excavator 
when it is in the loading mode for 3 hours of 
observed work. 

Overall, few deviations in the engine load and the 
speed are observed, and therefore, the emissions can be 
associated automatically when engine parameters fall 
within operating modes as outlined above. Likewise, it is 
a useful source of input data for building a simplified 
DES for equipment emissions (explained later). 

For the loading activity as shown in Figure 3, the 
excavator operates in higher engine load for the majority 
of the time (50%-90%) and between 1700 to 1900 rpm. 
It is a more intensive activity and it is logical to observe 
the differentiation in engine load and engine speed 
between the loading and idling activity. In the same 
manner the rate of fuel consumption and CO2 emission 
are much higher than in the idling activity, whereas the 
NOx emission shows a significant monotonic correlation 
with engine speed and engine load. This is explained due 
to the catalyst existing in the machine which activates 
when it reaches temperatures above 120 °C.  

4.3 Emissions calculating from simulation 

Based on the live recorded PEMS emissions data two 
arrays are generated: a probability array and a value array. 
The probability array encapsulates the likelihood of 
engine speed and load of the machine when the machine 
is in different working mode. Simultaneously, the value 
array associates real average values with each 
combination of engine speed and load. The core of our 
method involves the calculation of cumulative 
probabilities. After flattening the probability array, we 
calculated the cumulative probabilities of that array. The 
next step is the generation of random numbers distributed 
uniformly between 0 and 1. Subsequently, our approach 
identified the corresponding combination of engine load 
and speed for each randomly generated number. From the 
simulation we receive the time of each machine’s 
operation in the unit of seconds. For each second, we 
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estimate the emission and consumption calculation on the 
basis of the specified probabilities and associated values . 
The final result is a sum of emission and consumption 
values sampled from the distribution. 

4.4 Simulation engine, logic and parameters 

We used the SimPy simulation engine to perform the 
DES. SimPy is an open-source process-based discrete-
event simulation framework for Python. It provides the 
necessary components for modeling and simulating 
complex systems with discrete events, such as the 
advancement of time and interactions between different 
entities in the simulation (Table 2). The simulation 
(Figure 3) starts with a human user entering numerous 
input parameters it needs to run (see Table 3).  

Here, the vehicle agents of the excavator and trucks 
are modeled as resources (Figure 4). Conditional 
activities represent a task that starts when the resources 
are available in the queues. For instance, the loading 
operation starts when an excavator and a dump truck are 
available. A normal activity starts whenever an instance 
of any preceding activity ends. Therefore, the 
transportation operation takes place when the loading is 
finished. The queue nodes represent events that can occur 
in line ups, for example, when any of the machines turn 
to idling state. Additional information regarding the 
aforementioned terminology can be found in [19].  

Figure 4 shows dump truck/s stationed at an idling 
stage, forming a queue until an available loading spot 
becomes vacant for filling. The number of available 
loading spaces mirrors the count of excavators on site [1]. 
Upon reaching a loading spot, a truck awaits while the 
assigned excavator commences the filling operation, 
subsequently returning to the idling stage. The filling 
operation relates to the filling time. Once a dump truck is 
loaded, it departs from the construction site to haul the 
excavated soil to a temporary dump location. In cases 
where another truck awaits its turn, it promptly occupies 
the newly vacated loading space, ensuring seamless 
loader utilization. Conversely, should all loading spots be 
temporarily occupied, the excavator transitions into an 
idling mode until its services are requested. The loading 
process adheres to predefined parameters, specifically 
the truck’s capacity, the excavator’s bucket size, 
considering bank and loose states, which collectively 
determine the filling efficiency. Notably, the drilling rig 
operates independently from the excavator-dump truck 
system. It executes drilling operations and can enter very 
short idling modes when encountering major changes in 
soil type classifications, with the duration governed by 
distribution patterns, all are more detailed in Table 3. 
This structured approach intends to optimize construction 
site efficiency, ensuring resource allocation aligns with 
operational demands. 

 

Figure 3. Simulation logic to retrieve desired 
solution. 

Table 2. Time distributions of activities for   
construction machines used in the DES. 

Equipment Working modes Time distributions  

Drilling rig  
Drilling 
Idling 

Uniform (10,14) [min] 
Normal (30,10) [sec] 

Excavator  
Loading 
Idling 

Normal (25,5) [sec] 

Truck  
Driving 
Idling 

Uniform (5,8) [min] 

Table 3. Simulation parameters and preselected units. 

Parameter Explanation Units 
Simulation 

time 
The corresponding work 
time the simulation runs 

min [480 min 
= 1 workday] 

Excavator 
Loading material on dump 

truck, idling at times 
No. [1] 

Dump 
truck/s 

Hauling off material, 
idling at times 

No. [1..n] 

Drilling 
rig/s 

Boring piles in uncertain 
soil conditions, unloading 
material, idling at times 

No. [1-2] 

Distance to 
travel 

Hauling distance from 
construction to dump site  

km [1..30] 

Initial soil 
amount 

The amount of soil left 
over from previous drills 

m3 [1..n] 

Soil type 
variations 

Possibility of slightly 
varying excavated soil  

Factor [1-3] 

Excavator 
bucket size 

Volume for one swing of 
the excavator arm 

m3 

Truck 
capacity 

Truck bed size, incl. bank 
and loose states 

m3 [5-10] 

4.5 Realistic simulation scenario 

The logic explained above was applied to simulate 
activities, inspired by a real-life construction operation (a 
high-rise building in Aarhus, Denmark). On this project, 
a drilling rig produced foundation walls and, in the 
process, an excavator loaded the bored soil material on a 
dump truck that hauled it away to a nearby temporary 
storage location (Figure 5). A site manager interested in 
the construction equipment emissions and fuel 
consumption values provided the simulation parameters 
according to Table 3. The simulation was run 100 times 
to improve the confidence level of the results. Mean 
values were returned to the user for review (Table 4). 
 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

271



 

Figure 4. Discrete Event Simulation (DES) flowchart of the construction site operation. 
 

The simulated activities replicate a real high-rise 
building construction site in Aarhus, Denmark. A drilling 
rig produced foundation walls and the excavator loaded 
a dump truck to haul excessive earth material away to a 
nearby temporary dumping location (Figure 5).  

 

 

Figure 5. BIM-based construction site layout visible in 
the online user interface on the Digital Twin Platform 

Our DTP contains a BIM-based construction site layout 
plan that is linked via the Autodesk Platform Services 
(APS) to our DES. This is accessible online in a user 
interface in a web browser. The simulated scenarios 
allow to change any of the parameters given in Table 2, 
for example, the hauling distance can change from the 
nearby site (1 km) to further away (30 km) increasing the 
transportation time, creating more emissions and higher 
idling times for the truck, unless the end user (a project 
manager) decides to run the DES to optimize the system 
for both environmental and economic goals. Detailed 
results from the simulation can be visualized in the 
dashboard of the DTP (note: not shown) and are 
accessible in a .CSV-file for further processing using 
tools construction site practitioners are more familiar 
with (e.g., Excel). 

5 Results and Discussion 

For demonstration, we simulated two construction 
alternatives based on the realistic scenario. One serves as 
a baseline scenario (Alternative A) where one drilling rig, 
one truck and one loader are employed for soil digging 
and hauling for one full day. Alternative B employes one 
additional drilling rig of identical machine parameters.  

In the comparison between the two alternative 
construction plans (Table 4: A and B), it is evident that 
the utilization of two drilling rigs instead of using one is 
more productive. In the same work time Alternative B 
dug out nearly twice (199.04%) the amount of soil as 
Alternative A (158.12 m3 vs. 79.44 m3, respectfully, 
using the same number of trucks and loaders). The trucks 
also moved twice the amount of soil (153.33 m3 vs. 76.07 
m3, respectfully). However, the sum of all equivalent 
emission values (NOx and CO2) and the total fuel 
consumption of all machines increased by only 57.65%, 
70.05%, and 74.39%, respectfully.  

The system’s productivity of the two drill rigs, 
excavator and truck doubled compared to the scenario 
with only one drilling rig. From the decomposition of 
emission and fuel consumption, one can see that two drill 
rigs create nearly twice as much the amount of emissions. 
However, since the utilization rate of both loader and 
truck increased (note: less idle times), emissions drop 
sharply by using Alternative B instead of A. Moreover, 
the excavator loading the excavated material emits more 
CO2 emissions and consumes more fuel in Alternative B 
as it idles less and performs more loading cycles.  

Another key finding is that the alternative 
construction plan B doubled the amount of soil transferal 
in the same work time, resulting in higher productivity 
and less emissions per unit of work output as shown in 
Table 4. As anticipated, the drilling rig consumes a 
substantial amount of Diesel fuel, resulting in higher 
emissions. The loader follows as the second-largest 
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emitter, trailed by the dump truck.  
In brief, CO2 emissions exhibit a strong correlation 

with fuel consumption across all the machines. These and 
more insights can offer a comprehensive overview of 
emissions across the machinery fleet that is used in 

construction projects, aiding eventually in 
environmentally conscious decision-making and 
optimization efforts. 
 

 

 

Table 4. Results to a simplified Discrete Event Simulation (DES) comparing two alternative systems (A and B, 
while B consists of one additional drilling rig) (note: the choice of selecting alternative construction plans depends 
on the environmental and economic targets of the construction project and might be site and situational dependent). 

Machine Time  [mins] NOx [g] CO2 [kg] Fuel [kg] Soil moved [m3] 
Alternative A B A B A B A B     A B 
Drilling rig 1 477.48 475.86 149.21 148.80 191.82 191.15 60.79 60.58 

79.44 158.12 

Drilling 398.30 396.80 83.64 83.33 166.28 165.65 52.66 52.46 
Idling 79.18 79.06 65.56 65.46 25.54 25.50 8.13 8.12 

Drilling rig 2  475.98  148.79  191.21  60.59 
Drilling  396.90  83.31  165.70  52.48 

Idling  79.08  65.48  25.51  8.12 
Loader 460.59 469.49 102.78 103.26 67.99 76.68 16.25 18.91   

Idling 446.30 440.67 101.07 99.79 58.81 58.06 13.48 13.31   
Loading 14.29 28.82 1.71 3.46 9.19 18.61 2.77 5.60   

Truck 477.37 477.11 7.25 7.84 25.03 25.34 7.84 7.94 
 
 
76.07 

 
 
153.33 

Idling 395.03 381.46 2.96 2.86 19.04 18.38 5.97 5.76 
Loading 33.76 32.79 1.76 1.71 2.46 2.39 0.77 0.75 
Hauling 15.24 30.73 0.79 1.60 1.11 2.24 0.35 0.70 

Unloading 33.34 32.13 1.74 1.67 2.43 2.34 0.76 0.73 
Soil left [m3]         3.38 4.78 
Sum 480 480 259.24 408.69 284.84 484.38 84.88 148.02   
Savings according to Sum (2*A-B)/A [%] 42.35% 29.95% 25.61%  
Rates for emission or fuel consumption by 
work output (def. as soil moved by truck)  

3.41  
g/m3 

2.67 
g/m3 

3.71 
kg/m3 

3.15 
kg/m3 

1.16 
kg/m3 

0.97 
kg/m3 

  
 

 

6 Conclusion and Outlook 

This paper presented a novel approach where a 
Digital Twin Platform came into play to integrate, among 
other important construction data, a BIM-based 
construction site layout model, emissions from heavy 
equipment coming from IoT-sensors and being further 
processed, and a DES. While the simulation presented 
one noteworthy case of comparing alternative 
construction plans (resources and schedules), initial 
value was generated when assessing for environmental vs. 
economic project objectives. 

While the overall workflow and method have 
proven to work successfully, further work is necessary 
exploring more complex construction scenarios. This 
includes some statistical analysis of the results and the 
implications on environmental policies. Future work can 
also explore agent-based (simulation) modeling (ABM). 
Existing ABM primarily replicate how individuals within 
an organization or across various organizations interact 
in a synthetic environment, where agents make decisions 
and engage in communication [23]. Yet, several studies 
have explored the use of ABM to enhance efficiency in 
construction operations. With respect to their work, 
ABM has proven valuable particularly in earthmoving 
operations, due to its ability to accommodate diverse 

equipment specifications and provide more accurate time 
and cost estimates compared to simulation methods like 
Discrete Event Simulation (DES) [24]. Aside from 
researchers employing ABM to simulate earthmoving 
operations by equipping equipment agents with state 
charts and static and dynamic properties, ABM can be 
utilized to evaluate how off-site congestion and traffic 
flow of equipment agents impact the earthmoving 
efficiency [25]. Future work can also concentrate on the 
coordination between the earthmoving equipment agents 
at the project level and the provided safety measures to 
prevent collisions [26] and noise emissions [27]. 
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