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Abstract – 

As the key to intelligent construction, construction 

robots can perform complex and dangerous tasks 

instead of workers. Construction robot path planning 

(CRPP) is a prerequisite for executing tasks. However, 

dynamic environments and moving workers at sites 

create significant difficulties for CRPP. To solve this 

issue, this research proposes a construction robot 

path planning method based on safe space and worker 

trajectory prediction. Firstly, a grid map with a target 

point is automatically established based on BIM 

(Building Information Modeling) and construction 

schedule. Secondly, an improved A* algorithm with a 

dynamic weight of the heuristic function is developed 

for global path planning. Thirdly, the worker and 

robot safe space are defined, and worker trajectory is 

predicted to improve the DWA (Dynamic Window 

Approach) for local path planning. Furthermore, a 

decision model is developed to deal with the path 

conflict based on the potential collision zone (PCZ). 

Finally, an experiment is designed and conducted to 

validate the proposed method. It is found that the 

method can effectively achieve the optimal path and 

resolve path conflict to ensure worker and robot 

safety. 
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1 Introduction 

The construction industry contributes to economic 

growth worldwide and boosts numerous countries’ gross 

domestic product. However, it is confronted with global 

challenges, such as labour shortages, stagnant 

productivity, and frequent safety incidents [1]. An MGI 

(McKinsey Global Institute) survey indicates that over 

the past 20 years, the annual growth rate of labour 

productivity in the construction industry has been a mere 

2%, significantly lagging behind other industries [2]. 

Construction robots and automation technologies are 

recognized as the key to enhancing construction 

efficiency and safety [3]. Construction robots have 

demonstrated their advantages in various fields, 

including main structure and decoration works [4], 

building cleaning and waste recycling [5], and structural 

inspection. 

In construction environment, safe and efficient path 

planning is not only the fundamental to the execution of 

construction tasks by robots but also a critical factor in 

enhancing their operation efficiency [6]. The continuous 

dynamic changes at construction sites, especially the 

uncertainty caused by workers and machinery, pose 

enormous challenges to their collaboration safety while 

accomplishing their tasks [7]. Therefore, it is urgent to 

improve construction robots' path-planning capability at 

construction sites.  

Related advancements have been made in robotic 

path planning within construction scenarios. Pinto et al. 

developed a Vision-Guided Path-Planning System (V-

GPP). The system employs RGB-D cameras to acquire 

real-time environmental data, integrating A* algorithm 

and 3D grid maps to plan safe routes for cable-driven 

robots [8]. Do et al. [9] utilized depth cameras to collect 

information about onsite environment and obstacles, 

refining the path planning of sTetro robots for stair-

cleaning tasks through grid optimization and heat 

conduction analysis. However, current research mainly 

involves dynamic obstacles whose information is known 

and indoor scenarios, and ignores path conflict resolution 

strategies for random dynamic entities on site, especially 

in effectively integrating worker trajectory prediction 

with robotic path planning.  

Therefore, this research proposes a dynamic path-

planning method considering safe space and predicted 

worker trajectory to ensure the safety of worker-robot 

collaboration. A literature review is first made in Section 

2. Then, the path planning method is illustrated in Section 

3 and an experiment is conducted to test its performance 

in Section 4. In the end, a conclusion is drawn in Section 

5. 
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2 Literature review 

2.1 Path planning in dynamic environments 

Path planning-related research primarily focuses on 

global path planning based on known information and 

local path planning based on real-time sensor feedback. 

Global path planning can find the optimal route by 

fully exploiting the existing scene knowledge in static 

environments. Graph-search-based algorithms such as 

A* [10] and D* [11] have been extensively applied in 

path planning. Furthermore, biomimetic heuristic 

algorithms such as GA (Genetic Algorithm) [12], ACO 

(Ant Colony Optimization) [13], and neural network 

algorithms [5] have provided new perspectives for 

robotic path planning. By introducing a heuristic function, 

A* algorithm has significant advantages in enhancing 

search efficiency and is considered the best-first 

algorithm [14].  

Local path planning is crucial in guiding robots to 

avoid dynamic obstacles. The most used local path 

planning algorithms include Artificial Potential Field 

(APF) [15], Dynamic Window Approach (DWA) [16], 

and reinforcement learning-based method [17,18]. For 

instance, Anirudh et al. [17] trained a Coverage Path 

Planning (CPP) model for a tile-laying robot using 

reinforcement learning, maximizing the area coverage of 

tile laying while minimizing energy consumption.  

To address path planning problems in dynamic 

environments, a hybrid strategy that integrates global and 

local path planning has received significant attention. 

The hybrid approach initially generates an optimal route 

based on global path planning and then makes flexible 

adjustments using local path planning [19]. However, the 

method overlooks trajectory prediction for dynamic 

obstacles and fails to consider the safe space of workers 

and robots. Most studies expand on obstacles but lack a 

comprehensive and effective solution for path conflict. 

2.2 Worker trajectory prediction 

The dynamic and random environment of 

construction sites leads to frequent safety incidents [20] 

and poses significant challenges to construction robot 

path planning. The predicted trajectories of workers and 

machinery can enhance the efficiency and safety of path 

planning in such environments[21]. In current studies, 

trajectory prediction methods are primarily categorized 

into physics-based approaches (Sense - Predict) and 

learning-based approaches (Sense - Learn - Predict) [22]. 

Physics-based approaches are based on dynamic or 

kinematic models, using mathematical formulas to depict 

target motion. Zhu et al. utilized a Kalman filter to 

integrate parameters such as position, velocity, and 

acceleration for predicting the locations of workers and 

mobile equipment [23]. Considering the randomness of 

worker movement, some studies have adopted Markov 

Models to forecast workers' potential trajectories and 

statuses [24,25]. The parameters of these models are 

derived from historical data and do not require training 

data, which are suited for short-term predictions. 

Learning-based approaches can extract dynamic 

models and statistical behaviour patterns from vast 

training data, thus allowing long-term predictions in 

complex and dynamic environments. Long Short-Term 

Memory (LSTM) networks have been commonly used 

for motion trajectory prediction. Tang et al. [26,27] 

developed an LSTM encoder-decoder and combined it 

with a Mixture Density Network (MDN) to model the 

uncertainty in predictions, achieving entity trajectory 

forecasting up to 2 seconds. Cai et al. [28] proposed a 

context-aware LSTM-based method, extracting abundant 

contextual information (e.g., neighbour position, the 

relationship with the neighbour, and the distance from the 

destination) and feeding these data into the LSTM model 

for precise worker trajectory prediction. 

Learning-based approaches rely on extensive 

historical data while acquiring high-quality data at 

construction sites is challenging. This limits the accuracy 

of the models. On the other hand, physics-based 

approaches do not rely on massive historical data, which 

is more suitable for construction environments. 

3 Path planning method 

This method involves map establishment, global path 

planning, local path planning, and decision-making. This 

research establishes a grid map based on the BIM 

(Building Information Modeling) model and construction 

schedule, develops an improved A* algorithm for global 

path planning in the static map and an improved DWA 

for local path planning based on safe space and predicted 

worker trajectory, and builds a decision model to reduce 

unnecessary local planning. 

3.1 BIM-based map establishment 

BIM includes plenty of building information, which 

can provide a basis for establishing construction maps. 

By exporting a BIM model to an IFC (Industry 

Foundation Classes) file, basic information such as 

component type, component location, and geometric 

dimensions, can be extracted to generate a preliminary 

map. The IFC has a standard syntax to obtain component-

related information. For example, 

IFCCARTESIANPOINT in Figure. 1(b) represents the 

position of a column, and IFCCOLUMNTYPE contains 

the component’s global ID (e.g. the column’s global ID 

is '1I2u_TieX4cg$DLo1NNHAJ') and its attribute 

information such as the component type and dimensions 

(e.g. the component type is COLUMN and its cross-

section size is 500x500mm). With the location and cross-
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section information, each component can be drawn in the 

grid map. Meanwhile, the construction schedule is 

automatically generated based on previous research by 

the authors [29] (e.g., Figure. 1(c)). Both completed 

construction tasks and those to be completed can be 

obtained from the schedule to update the grid map (e.g., 

Figure. 1(d)). Each gray rectangle not only represents an 

obstacle but also has semantic information (e.g., 

component type and size) through the global ID. The gray 

rectangles represent the columns that have been 

constructed, while the red one represents the column to 

be done, which is the target for the construction robot.  

 

Figure 1. The establishment of a grid map  

3.2 Improved A* for global path planning 

A* algorithm is a heuristic search algorithm suitable 

for global path planning in a static environment with 

known information. The basic idea is to sort the cost of 

the optional nodes around a current node, select the least-

cost node, and repeat the process until it reaches the target 

point. In a 2D grid map, A* algorithm utilizes the cost 

function f(n) to evaluate the path length as Equation (1). 

f(n) = 𝑔(𝑛) + ℎ(𝑛) (1) 

Where, 𝑔(𝑛) is the distance from the start node to the 

current node, and ℎ(𝑛)  is the heuristic function 

representing the distance from the current node to the 

destination. 

Traditional A* algorithms use the same weights for 

𝑔(𝑛) and ℎ(𝑛), which leads to more search nodes and 

low efficiency. This research adds dynamic weight 𝑤 

to  ℎ(𝑛) (see Equation (2)), increasing 𝑤  when 𝑔(𝑛)  is 

less than ℎ(𝑛)  and decreasing 𝑤  when 𝑔(𝑛)  is greater 

than ℎ(𝑛) . The dynamic weight can consider the 

characteristics of the construction schedule to reduce the 

search space and increase the search speed. 

f(n) = 𝑔(𝑛) + 𝑤 · ℎ(𝑛) (2) 

3.3 Improved DWA for local path planning 

In traditional DWA, robots' speed limit only 

considers motor performance and braking distance. 

Besides, the distance and velocity functions are built 

based solely on the simple expansion of an obstacle. The 

dynamic properties of robots and workers and the future 

state of workers are not considered. Therefore, a safe 

space is defined and created for both workers and robots, 

and worker trajectory is predicted to modify DWA to 

ensure the safety of the path. 

3.3.1 Safe space definition of workers and robots 

 (1) Worker safe space 
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This research defines worker safe space (WSS) as the 

worker operation space (WOS) and worker movement 

space (WMS), as shown in Figure. 2. WOS refers to the 

maximum space occupied by a worker's operation. This 

research adopts the maximum arm span of a standing 

worker as WOS, which is a circle with radius 𝑟𝑤 . 

According to Chinese National Standard GB/T 13549-92 

“Human dimensions in workspace” [30], the arm span of 

an adult male is 1.78m (90th percentile). WMS is the 

distance 𝑠𝑤  traveled by a worker during the period of 

time when a robot detects the worker and reacts until the 

robot comes to a complete stop. WOS is a static region, 

while WMS is dynamic and related to worker speed. 

 

Figure 2. Worker safe space 

Referring to ISO 15066 [31], 𝑠𝑤  is calculated as 

Equation (3). 

𝑠𝑤 = ∫ 𝑣𝑤(𝑡) 𝑑𝑡
𝑡0+𝑇𝑟+𝑇𝑠

𝑡0

(3) 

Where, 𝑡0 , 𝑇𝑟 , 𝑇𝑠  represent the present time, the 

reaction time of a construction robot, and the stopping 

time of the robot; 𝑣𝑤  is the worker’s speed in the 

direction of the robot. ISO 13855 [32] recommends a 

value of 1.6 m/s for the speed of human motion, thus 

Equation (3) can be simplified to Equation (4). 

𝑆𝑤 = 𝑣𝑤(𝑇𝑟 + 𝑇𝑠) = 1.6 × (𝑇𝑟 + 𝑇𝑠) (4) 

(2) Construction robot safe space 

This research defines construction robot safe space 

(CRSS), which consists of self-occupied space (SS), 

safety distance (SD), and braking space (BS) (see Figure. 

3). SS is the smallest outer circle occupied by a robot. SD 

refers to the minimum distance 𝑙𝑐𝑟  that should be 

maintained between a worker and the robot in a 

collaborative situation. According to ISO10128 [33], 𝑙𝑐𝑟  

takes the value of 0.5m. BS means the distance 𝑠𝑐𝑟  

traveled by the robot from the time point to detect the 

worker to that to stop. 

As in Equations (5) and (6), 𝑠𝑐𝑟  consists of 𝑠𝑐𝑟1 and 

𝑠𝑐𝑟2 . 𝑠𝑐𝑟1  represents the distance traveled during the 

reaction time of the robot, while 𝑆𝑐𝑟2  represents the 

distance travelled during the robot's stopping time. 

 

Figure 3. Construction robot safe space 

𝑆𝑐𝑟1 = ∫ 𝑣𝑟(𝑡) 𝑑𝑡
𝑡0+𝑇𝑟

𝑡0

(5) 

𝑆𝑐𝑟2 = ∫ 𝑣𝑠(𝑡) 𝑑𝑡
𝑡0+𝑇𝑟+𝑇𝑠

𝑡0+𝑇𝑟

(6) 

Where, 𝑣𝑟  is the directed speed of the robot in the 

direction of the worker. 𝑣𝑠 is the speed of the robot in the 

course of stopping. In this research, the robot's motion 

during the reaction time is simplified as a uniform 

velocity motion, and the motion during the stopping time 

is simplified as a constant deceleration motion. Then, 

Equations (5) and (6) are respectively simplified to 

Equations (7) and (8). 

𝑆𝑐𝑟1 = 𝑣𝑟(𝑡0) × 𝑇𝑟 (7) 

𝑆𝑐𝑟2 =
1

2
𝑣𝑟(𝑡0)𝑇𝑠 (8) 

With the safe space of workers and robots, the 

objective functions (e.g., distance and velocity) can be 

optimized in DWA algorithm. 

3.3.2 Worker trajectory prediction 

In the context of intelligent construction, construction 

robots are disturbed mainly by workers and other robots 

on site. This paper assumes that construction robots 

onsite can interact with each other to avoid collisions, 

which can reduce some unpredictable interference. 

Construction workers are the most common and complex 

dynamic obstacles at construction sites. Therefore, this 

study focuses on the worker as a dynamic obstacle for 

localized collision avoidance. Predicting worker 

trajectory can provide abundant information for the local 

path planning of robots and improve their path safety. 

Differing from the traditional prediction that assumes an 

obstacle to move in a uniform linear motion, this research 

considers worker turning and establishes a nonlinear 

model of workers (i.e., constant linear velocity v and 

angular velocity ω). Then, worker trajectory is predicted 

based on CKF (Cubature Kalman Filter). The status 

vector 𝜓  is defined as Equations (9) and (10). 

𝜓 = [

𝑥
𝑦
𝑣
𝜃
𝜔

] (9) 
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𝜓𝑡 = 𝜓𝑡−1 + ∫

[
 
 
 
 
𝑥′(𝑡)

𝑦′(𝑡)

𝑣′(𝑡)

𝜃′(𝑡)

𝜔′(𝑡)]
 
 
 
 

𝑡

𝑡−1

𝑑𝑡

[
 
 
 
 
 𝑥𝑡−1 +

𝑣

𝜔
𝑠𝑖𝑛𝜃𝑡−1 cos(𝜔 ∗ ∆𝑡) +

𝑣

𝜔
𝑐𝑜𝑠𝜃𝑡−1 sin(𝜔 ∗ ∆𝑡) −

𝑣

𝜔
𝑠𝑖𝑛𝜃𝑡−1

𝑦𝑡−1 −
𝑣

𝜔
𝑐𝑜𝑠𝜃𝑡−1 cos(𝜔 ∗ ∆𝑡) +

𝑣

𝜔
𝑠𝑖𝑛𝜃𝑡−1 sin(𝜔 ∗ ∆𝑡) +

𝑣

𝜔
𝑐𝑜𝑠𝜃𝑡−1

𝑣
𝜃𝑡−1 + 𝜔 ∗ ∆𝑡

𝜔 ]
 
 
 
 
 

(10)

Where, 𝑥 ,  𝑦 , 𝑣 , 𝜃  and 𝜔  denote the horizontal 

coordinates, vertical coordinates, velocity, angle, and the 

deflection angular velocity of a worker at time 𝑡 , 

respectively. 

The status and observation equations are defined as 

Equations (11) and (12), respectively. 

𝜓𝑡 = 𝐹(𝜓𝑡−1) + 𝜑𝑡 (11) 

𝑍𝑡 = H ∗ 𝜓𝑡 + 𝜆𝑡 (12) 

Where, 𝐹 , 𝜑𝑡 , 𝑍𝑡 , H, and 𝜆𝑡  is the nonlinear status 

transition matrix, the system noise vector, the 

observation vector, the observation matrix, and the 

observation noise vector, respectively. The observation 

vector 𝑍  can be obtained by collecting worker 

coordinates from sensors. The observation matrix 𝐻 in 

Equation (14) shows the transformation from the state 

vector 𝜓𝑡 to the observation vector 𝑍𝑡. 

𝑍 = [
𝑥
𝑦] (13) 

𝐻 = [
1 0 0 0 0
0 1 0 0 0

] (14) 

𝜑𝑡  and 𝜆𝑡  are assumed to satisfy positive definite, 

symmetric and uncorrelated, zero mean Gaussian white 

noise vector, e.g., 𝜑𝑡~𝑁(0, 𝑄𝑡) , 𝜆𝑡~𝑁(0, 𝑅𝑡)  in 

Equation (15) and (16). 

𝑄 =

[
 
 
 
 
𝜎𝑥

0
0
0
0

  

0
𝜎𝑦

0
0
0

  

0
0
𝜎𝑣

0
0

  

0
0
0
𝜎𝜃

0

  

0
0
0
0
𝜎𝜔]

 
 
 
 

(15) 

𝑅 = [
𝜎𝑥′ 0

0 𝜎𝑦′
] (16) 

Where, 𝜎𝑥, 𝜎𝑦, 𝜎𝑣, 𝜎𝜃, and 𝜎𝜔 represent the variances 

of 𝑥 , 𝑦 , 𝑣 , 𝜃 , and 𝜔  respectively. 𝜎𝑥′  and 𝜎𝑦′ 

respectively represent the variances of the observation 

vector. The status vector 𝜓  includes 5 parameters 

belonging to a high dimensional system. For nonlinear 

state estimation, Arasaratnam and Haykin [34] proposed 

the CKF, which derives a third-degree spherical-radial 

cubature rule. The aforementioned kinematic model 

belongs to the nonlinear state model, solved using CKF. 

Then, the predicted trajectory can optimize the DWA's 

distance function and velocity range. Meanwhile, 

considering some unpredictable disturbances onsite, we 

shorten the exploration time (i.e., the search step of DWA) 

to minimize collisions in the search space. 

3.4 A decision model for path conflict 

Path conflict is the core of the dynamic planning 

problem. However, a path conflict does not mean that a 

collision will occur. Collisions happen when both spatial 

and temporal conflicts occur. Therefore, to reduce 

unnecessary local planning and make path planning more 

efficient, a decision model is proposed. Based on the 

global path and worker trajectory prediction, the potential 

collision zone (PCZ) between the paths can be obtained 

to determine if spatial conflicts occur (see Figure. 4). The 

PCZ is generated and updated in real time since the 

worker trajectory is predicted in real-time. If there are no 

PCZs between the two paths, there will be no spatial 

conflicts between the worker and the robot. Therefore,  

collisions do not occur, and the robot can follow the 

globally optimal path. 

 

Figure 4. Potential collision zone (PCZ) 

When a PCZ exists (i.e., a spatial conflict exists), the 

decision model will further determine the temporal 

conflict to select a decision. The time for workers to enter 

and leave the PCZ is calculated as 𝑡𝑖 and 𝑡𝑗 respectively. 

Then, the time for the construction robot to enter and 

leave the PCZ is calculated as 𝑡𝑝 and 𝑡𝑞. Depending on 

the time when the robot enters the PCZ, the following 

robot decisions are made: 1) Maintain the original speed 

and path, 2) Maintain the original path and reduce speed, 

and 3) Change paths. The decision model is presented as 

follows: 

Case 1: When 𝑡𝑞 < 𝑡𝑖, the worker has crossed the PCZ, 

while the robot has not yet entered the PCZ. Therefore, 

the robot can travel at its original path and speed. 

Case 2: When 𝑡𝑝 > 𝑡𝑗, the worker has not yet entered 

the PCZ, while the robot has crossed the PCZ. Therefore, 

the robot can travel on its original route and speed. 

Case 3: When 𝑡𝑝  < 𝑡𝑖  < 𝑡𝑞  < 𝑡𝑗  and 𝑡𝑝  < 𝑡𝑖  < 𝑡𝑗  < 𝑡𝑞 , 
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the robot and the worker will meet in the PCZ, with the 

robot entering the PCZ first. Therefore, the robot needs 

to change a path locally. 

Case 4: When 𝑡𝑖  < 𝑡𝑝  < 𝑡𝑞  < 𝑡𝑗  and 𝑡𝑖  < 𝑡𝑝  < 𝑡𝑗  < 𝑡𝑞 , 

the robot and the worker will meet in the PCZ, with the 

worker entering the PCZ first. Therefore, the robot needs 

to reduce speed or change paths. If the robot cannot avoid 

the collision by decelerating, the robot needs to change 

path locally. 

A sudden turn by the worker can lead to a failed 

trajectory prediction, in which case the decision model 

will control the robot to stop immediately (e.g. decision 

(2)). The improved DWA will plan a local path for these 

cases, where changing paths is required. The decision 

model reduces robot replanning and unnecessary local 

planning, allowing the robot to follow the optimal path as 

much as possible.  

4 Experiment and test 

4.1 Experiment 

An experiment was designed to validate the 

feasibility of the proposed method. For global path 

planning, the experiments tested the improved A* 

algorithm on a grid map with a schedule (see Figure 5). 

In the grid map, the left side represents completed 

construction areas, and the right side represents areas that 

have not yet started. For local path planning, the test used 

a tracked vehicle to represent a construction robot and a 

humanoid robot to represent a worker, as shown in Figure. 

6. Meanwhile, columns and materials were placed in the 

scene to simulate a construction site better. 

A depth camera was utilized to acquire the position of 

the worker and robot, further calculating their safe spaces, 

and predicting worker trajectories. Then, the improved 

A* algorithm was utilized to plan the global path. As a 

dynamic obstacle, the worker moved at different speeds 

within a low-speed range and conflicted with the global 

path. Based on the decision model, the construction robot 

would decide whether to perform local path planning. 

4.2 Results 

The improved A* can successfully generate the 

global path as shown in Figure. 5. Meanwhile, table 1 

compares the planning time of traditional and improved 

A* algorithms under various starting and target points. In 

the local path planning scenario, the global path (the 

purple line) and the predicted worker trajectory (the blue 

band) are shown in Figure. 6. A PCZ exists between the 

global path and the predicted trajectory. In Figure. 6, 

since the worker would leave before the robot reached the 

PCZ, the robot followed its original path and speed 

without local path planning according to the decision 

model. In Figure. 7, the robot and the worker would meet 

in the PCZ, where the path needs to be locally planned 

using the improved DWA algorithm. Figure. 7 (a) shows 

the local path (the blue line) considering the predicted 

worker trajectory. The robot found a path behind the 

worker, preventing the secondary collision from going 

around in front of the worker. Compared with the local 

path without the prediction in Figure. 7 (b), the robot 

passed in front of the worker, which might cause a 

secondary collision. 

 

Figure 5. The experimental scenario for global 

path planning 

 

Figure 6. The experimental scenario for local path 

planning 

Table 2 presents the comparison of prediction results 

for the worker and decisions for the robot with and 

without a sudden turn of the worker. Table 3 summarizes 

three groups of experiment results, including the path 

length. Path length means the length from the starting 

point to the target point, including locally planned paths.
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Figure 7. The improved DWA 

Table 1. Comparison of traditional and improved A* 

Experiment 1 2 3 

Time for traditional A* (s) 38.27 30.46 31.32 

Time for improved A* (s) 13.05 12.96 11.42 

Table 2. Comparison of prediction results for the worker and decisions for the robot 

Experiment 1 2 3 

Without a 

sudden turn 

Predicted results Success Success Success 

Decision for the robot (2) (3) (1) 

With a sudden 

turn 

Predicted results Failure Failure Failure 

Decision for the robot (2) (2) (2) 

Table 3. Comparison of traditional and improved DWA 

Experiment 
Path length (m) Reduced weight of paths 

(%) Traditional DWA Improved DWA 

1 5.41 4.97 8.1 

2 5.49 5.01 8.7 

3 6.04 5.17 14.4 

4.3 Discussion 

The results indicate that the construction robot can 

reach the target point by avoiding the moving workers, 

ensuring path safety. According to Table 1, the improved 

A* can enhance the efficiency of global planning. After 

fusing the safe space and the predicted worker trajectory, 

the improved DWA algorithm can find the path behind 

the worker, avoiding multiple planning and secondary 

collisions with the worker (see Figure. 7). The 

improvement further ensures path safety and path 

planning efficiency. Table 2 illustrates that the method 

can successfully predict the worker's trajectory without a 

sudden turn, while a sudden turn by a worker may lead to 

failed predictions. In the case of failed predictions, the 

decision model will make the robot decelerate to avoid 

the collision. 

According to Table 3, the improved method can 

achieve a shorter path, 8% less than the traditional A* 

and DWA methods. Meanwhile, the decision model can 

avoid unnecessary local planning, making the planning 

process more efficient. For example, although the robot 

and worker paths overlap in Figure. 6, they arrive at the 

PCZ at different times, which means there is no collision 

between them and no need for local path replanning. 
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5 Conclusion 

This research proposes a construction robot path 

planning method to cope with the dynamic environment 

at construction sites. Specifically, a grid map 

incorporating a construction schedule is established, an 

improved A* is developed for global path planning, the 

safe space and worker trajectory prediction are 

considered to improve the DWA algorithm for local path 

planning, and a decision model is developed to enhance 

efficiency in local path planning. It is shown from the 

experiment that 1) the proposed method can find a global 

path efficiently, 2) the improved DWA can generate a 

safe path, avoiding secondary collisions with the worker, 

and 3) the decision model reduces robot local path 

replanning and better maintains globally optimal paths. 

Thus, the proposed method can effectively support 

construction robot path planning at construction sites. 

The limitations of this research are summarized as 

well. Firstly, the experiment tests are conducted in a 

laboratory environment, which ignores some 

unpredictable disturbances. Secondly, only one worker 

and one robot are considered in this research. Future 

research will conduct experiments in the field and 

consider other disturbances, such as multiple robots, 

faster worker speeds and temporary piles of material. 
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