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Abstract -
Overhead cranes, which are traditionally classified as un-

deractuated systems, face a persistent challenge in balancing
the assertiveness of trolley movement and the amplitude of
the payload oscillation. This difficulty is exacerbated by the
crane’s inherent double-pendulum characteristics. To im-
prove the operational efficiency and fault tolerance of cranes
when lifting large and heavy construction components, this
research proposed a novel and proactive swing attenuation
crane controlling approach. The method was designed to
integrate two auxiliary control inputs extracted from the
complex and coupled dynamics using a customized Model
Predictive Controller (MPC). The performance of the pro-
posed approach was validated by comparing it to common
controllers such as the linear quadratic regulator (LQR) and
sliding mode controller (SMC). It is proven that the proposed
approach makes cranes more resilient to specific types of un-
certainties and adverse conditions, resulting in safe, efficient,
and intelligent overhead crane transportation.

Keywords -
Double-Pendulum; Overhead Crane; Modular integrated

Construction (MiC); Swing Attenuation; Proactive Hook-
load Stabilization; Model Predictive Control (MPC); Sliding
Mode Control (SMC)

1 Introduction

In the Architecture, Engineering, and Construction
(AEC) industry, efficient transportation of substantial pay-
loads is a routine necessity, demanding machinery such
as crane systems with exceptional maneuverability and
adaptability. Recent research highlighted that these crane
systems often exhibit the characteristics of underactuated
systems, providing increased degrees of freedom with a
limited number of control inputs [1], [2], [3]. Conse-
quently, careful treatment of trolley translation in the hori-
zontal plane is crucial to avoid undesirable payload swings,
which not only reduce efficiency but also lead to potential
on-site damages [4]. In practical applications, the hook
is commonly not positioned at the exact end of the hoist-
ing rope; instead, additional ropes connect the load to the

(a) Demonstration of connec-
tion between hook and MiC

(b) The self-built 2-D overhead
crane model

Figure 1. Onsite photos of MiC and 2-D crane model

hook as shown in Figure 1a. However, this results in a
coupled and complex double pendulum swing, making
the dynamic model of crane-load challenging to control
[5].

Traditionally, skilled operators effectively mitigate load
oscillations based on their environmental perception and
empirical judgment. However, given the substantial costs
associated with workforce training and potential accidents
during manual crane operations, there is a compelling need
for advanced automated control mechanisms tailored for
crane systems or a novice-friendly auxiliary operating sys-
tem, especially for transporting giant and heavy payloads
like MiC modules [6].

The pendulum model poses a classical oscillatory con-
trol problem, prevalent in all cranes. Previous researchers
have applied various open-loop control methods to elimi-
nate hook swings. Two common strategies include input
shaping [7], [8] and trajectory planning-based control [9],
[10]. These methods design multiple inputs based on the
system’s dynamic model to counteract oscillations. How-
ever, vulnerability may arise if the system identification
during modeling is incomplete, or if unknown external
disturbances occur during execution [11]. In such cases,
aligning the system’s response with the envisioned motion
trajectory becomes challenging. Concurrently, numerous
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(a) Side-view

𝐶𝐶𝑊 𝐶𝑊

𝐹2,𝐿 𝐹2,𝑅

(b) Front-view

Figure 2. Illustration of spinning propellers mounted
on the MiC block (CW for clock-wise, CCW for
counter-clock-wise), total force acted on the block
would be 𝐹2 = 𝐹2,𝐿 − 𝐹2,𝑅, where the propellers
mounted on the hook were identical

studies have explored closed-loop control, employing ad-
vanced controllers like Fuzzy Control and its variant [12],
[13], [14], as well as Model Predictive Control (MPC) [15],
[16]. These controllers effectively mitigate swing angles
in both transient and steady-state phases. However, when
the model is intricately delineated as a double pendulum,
the pronounced nonlinear dynamics pose challenges, es-
pecially considering external factors like air resistance and
wind, which could compromise the reliability of the con-
troller’s model. Despite adopting a closed-loop methodol-
ogy, the scarcity of controllable variables in underactuated
systems remains a regrettable limitation.

Therefore, to enable rapid and significant oscillation
suppression during various trolley movement tasks, a novel
approach adding two sets of auxiliary control inputs is in-
troduced to this underactuated system. Given the strong
coupling behavior among inputs and dynamics, the ap-
plication of single-input single-output (SISO) controllers,
such as ordinary PID controllers, may encounter chal-
lenges [17]. This study emphasizes the application of
multi-input multi-output (MIMO) controllers instead, for
achieving desired control outcomes.

Maintaining the integrity of the system, the aforemen-
tioned control inputs rely on the thrust differentials gener-
ated by propellers’ rotations, as both the hook and MiC are
suspended in the air and connected using flexible cables
and joints, without moment transmission. This config-
uration, as illustrated in Figure 1b and 2, allows for the
desired execution of intended objectives meanwhile min-
imizing response instability and lag during swing angle
zero-crossing transitions, where the need for abrupt stop-
reverse rotations of propellers arises. Since an overhead
crane involves movements in two perpendicular planes
[18], the study formulates a 2-D spatial model for prelim-
inary validation and presents the following contributions:

1. Analyze the system dynamics of a 2-D overhead crane
with two additional control inputs.

2. Utilizing states of the hook and measurable trol-
ley movement, design a model predictive-based con-
troller to tune the inputs under constraints.

𝑦
𝐽𝑖𝑏

𝑧

𝑇𝑟𝑜𝑙𝑙𝑒𝑦(𝑟𝑡 , 𝑧𝑡 )

𝐻𝑜𝑜𝑘 (𝑟ℎ, 𝑧ℎ, 𝑚ℎ)

𝑀𝑖𝐶 (𝑟𝑚, 𝑧𝑚, 𝑚𝑚)

𝑙1

𝑙2

𝐹1

𝐹2

𝜃1

𝜃2

Figure 3. Schematic of the double-pendulum system

3. Achieve noticeable efficacy and show strong re-
silience against assigned adverse impacts and uncer-
tainty through simulations.

The rest of the paper is organized as follows. Section 2 an-
alyzes full-state dynamics for controller design under the
hypothesis of single-axis trolley movement along the jib
and forces acting at the center of mass. Simulations in Sec-
tion 3 verify performance and robustness. The conclusion
and future work are presented in the last section.

2 Methodology
2.1 System dynamics

For the 2-D overhead crane scenario interested in this
study, its schematic is shown in Figure 3, all directions
and angular polarity are specified and applied consistently
throughout all simulations and controller designs. If the
first set of steel ropes connecting the trolley and the hook
is 𝑙1, the second set connecting the hook and MiC block
is 𝑙2, then all coordinates can be properly expressed using
𝑟𝑡 , 𝜃1, 𝜃2, 𝑙1, 𝑙2, and trigonometry as:

𝑟ℎ = 𝑟𝑡 + 𝑙1𝑠𝑖𝑛𝜃1, 𝑟𝑚 = 𝑟𝑡 + 𝑙1𝑠𝑖𝑛𝜃1 + 𝑙2𝑠𝑖𝑛𝜃2,

𝑧ℎ = 0 − 𝑙1𝑐𝑜𝑠𝜃1, 𝑧𝑚 = 0 − 𝑙1𝑐𝑜𝑠𝜃1 − 𝑙2𝑐𝑜𝑠𝜃2.

Then the dynamics of this system can be represented using
Lagrangian Mechanics. The kinetic energy (𝒯), potential
energy (𝒱) and Lagrangian (ℒ) of the system can be
expressed as below:

𝒯 =
1
2
𝑚𝑚 (( ¤𝑟𝑡 + 𝑙1 cos 𝜃1 ¤𝜃1 + 𝑙2 cos 𝜃2 ¤𝜃2)2

+ (𝑙1 sin 𝜃1 ¤𝜃1 + 𝑙2 sin 𝜃2 ¤𝜃2)2)

+ 1
2
𝑚ℎ (( ¤𝑟𝑡 + 𝑙1 cos 𝜃1 ¤𝜃1)2 + 𝑙21 sin 𝜃2

1
¤𝜃2
1),

(1)

𝒱 = −𝑚𝑚𝑔(𝑙1 cos 𝜃1 + 𝑙2 cos 𝜃2) − 𝑚ℎ𝑔𝑙1 cos 𝜃1, (2)
ℒ = 𝒯 −𝒱. (3)
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For the forces acting on the hook and MiC block, they are
marked as 𝐹1 and 𝐹2, respectively. Since their directions
are always perpendicular to the rope sets (𝑙1, 𝑙2) and within
the plane of y-z axes, their interference against 𝜃1 and 𝜃2
can be derived as below:

d
d𝑡
𝜕ℒ

𝜕 ¤𝜃1
− 𝜕ℒ

𝜕𝜃1
= 𝐹1𝑙1, (4)

d
d𝑡
𝜕ℒ

𝜕 ¤𝜃2
− 𝜕ℒ

𝜕𝜃2
= 𝐹2𝑙2, (5)

substituting (3) to (4) and (5), the shortened form can be
obtained:

𝐹1 = 𝑙1 (𝑚ℎ + 𝑚𝑚) ¥𝜃1 + (𝑚ℎ + 𝑚𝑚) cos 𝜃1 ¥𝑟𝑡
+ (𝑚ℎ + 𝑚𝑚)𝑔 sin 𝜃1 + 𝑙2𝑚𝑚 sin(𝜃1 − 𝜃2) ¤𝜃2

2
+ 𝑙2𝑚𝑚 cos(𝜃1 − 𝜃2) ¥𝜃2, (6)

𝐹2 = 𝑙2𝑚𝑚
¥𝜃2 + 𝑚𝑚 cos 𝜃2 ¥𝑟𝑡 + 𝑚𝑚𝑔 sin 𝜃2

− 𝑙1𝑚𝑚 sin(𝜃1 − 𝜃2) ¤𝜃2
1 + 𝑙1𝑚𝑚 cos(𝜃1 − 𝜃2) ¥𝜃1. (7)

2.2 Linearization and state-space function

For crane dynamics, independent of the categories they
belong to, a widely adopted and well-established practice
is to linearize the dynamic equations through the small
angle assumption [19], [20]. For Equation (6) and (7),
they can be linearized and rearranged as below:

¥𝜃1 = −𝑔(𝑚ℎ + 𝑚𝑚)
𝑙1𝑚ℎ

𝜃1 +
𝑔𝑚𝑚

𝑙1𝑚ℎ

𝜃2 −
𝐹2 − 𝑚𝑚 ¥𝑟𝑡
𝑙1𝑚ℎ

+ 𝐹1 − (𝑚ℎ + 𝑚𝑚) ¥𝑟𝑡
𝑙1𝑚ℎ

,

(8)

¥𝜃2 =
𝑔(𝑚ℎ + 𝑚𝑚)

𝑙2𝑚ℎ

𝜃1 +
(𝑚ℎ + 𝑚𝑚) (𝐹2 − 𝑚𝑚 ¥𝑟𝑡 )

𝑙2𝑚ℎ𝑚𝑚

− 𝐹1 − (𝑚ℎ + 𝑚𝑚) ¥𝑟𝑡
𝑙2𝑚ℎ

− 𝑔(𝑚ℎ + 𝑚𝑚)
𝑙2𝑚ℎ

𝜃2.

(9)

The primary objective of the controllers is to mitigate the
oscillations of both the hook and MiC module near the
normal projection of the trolley position. Thus, the full
states vector in this study will be designated as 𝑥(𝑡) =

[𝜃1, ¤𝜃1, 𝜃2, ¤𝜃2]𝑇 and the desired state should be 𝑥𝑑𝑒𝑠 =

[0, 0, 0, 0]𝑇 . Inspired from Equation (8) and (9), let

𝜐1 = 𝐹1 − (𝑚ℎ + 𝑚𝑚) ¥𝑟𝑡 , (10)
𝜐2 = 𝐹2 − 𝑚𝑚 ¥𝑟𝑡 , (11)

thus a tailored control inputs vector 𝑢(𝑡) = [𝜐1, 𝜐2]𝑇 can
be obtained to form the following state-space system:

¤𝑥 = 𝐴𝑥 + 𝐵𝑢, (12)
𝑦 = 𝑥, (13)

where 𝑦(𝑡) ∈ R4×1 denotes the output vector, 𝐴 ∈ R4×4

and 𝐵 ∈ R4×2 are the system parameter matrices, where
can be derived from Equation (8) - (13) as below:

𝐴 =


0 1 0 0

− 𝑔 (𝑚ℎ+𝑚𝑚 )
𝑙1𝑚ℎ

0 𝑔𝑚𝑚

𝑙1𝑚ℎ
0

0 0 0 1
𝑔 (𝑚ℎ+𝑚𝑚 )

𝑙2𝑚ℎ
0 − 𝑔 (𝑚ℎ+𝑚𝑚 )

𝑙2𝑚ℎ
0


, (14)

𝐵 =


0 0
1

𝑙1𝑚ℎ
− 1

𝑙1𝑚ℎ

0 0
− 1

𝑙2𝑚ℎ

𝑚ℎ+𝑚𝑚

𝑙2𝑚ℎ𝑚𝑚

 . (15)

It is worth noting that ¥𝑟𝑡 is neither an independent con-
trol input nor a component of the system states. Given
that the trolley movement is considered arbitrary, accel-
eration serves as a parameter readily obtainable through
measurement. They could be treated as compensation in
the controller for the dynamic impact of external motion
on the system output.

Take a time interval𝑇𝑠 as sampling time, the system can
be properly discretized from Equation (12) and (13):

𝑥(𝑘 + 1) = 𝐴𝑑𝑥(𝑘) + 𝐵𝑑𝑢(𝑘), (16)
𝑦(𝑘) = 𝑥(𝑘), (17)

where 𝐴𝑑 = (1 + 𝐴𝑇𝑠) |𝑥=𝑥 (𝑘 ) , 𝐵𝑑 = (𝐵𝑇𝑠) |𝑥=𝑥 (𝑘 ) .

2.3 MPC design

Model Predictive Controller (MPC), employing the re-
ceding horizon approach, is a control strategy that pre-
dicts the dynamics within ℎ steps (horizon length) and
optimizes the control input array to minimize the cost be-
tween predicted and reference values. Eventually, only the
first element of this array is applied. Therefore, a refer-
ence generator for prediction at time instant 𝑘 within the
horizons is set as:

𝑟 𝑓 (𝑘)𝑖 = 𝑥(𝑘)1+ (𝑖−1) 𝑥𝑑𝑒𝑠 − 𝑥(𝑘)1
ℎ − 1

, 𝑖 = 1, 2, 3, . . . , ℎ ,
(18)

where 𝑟 𝑓 (𝑘)𝑖 is the 𝑖th generated reference state at time
instant 𝑘 , 𝑥(𝑘)1 denotes state at time instant 𝑘 , and the
discretized system follows:

𝑥(𝑘)𝑖 = 𝑥(𝑘)𝑖−1 + (𝑇𝑑
ℎ

+ 𝑇𝑠) ¤𝑥(𝑘)𝑖−1, 𝑖 = 2, 3, 4, . . . , ℎ ,
(19)

where 𝑇𝑑 is the inherent time delay of the system, 𝑇𝑠 is the
time step for prediction, and the cost function is defined
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as:

𝐽𝑀 = (𝑟 𝑓 (𝑘)ℎ − 𝑥(𝑘)ℎ)𝑇𝐹𝑀 (𝑟 𝑓 (𝑘)ℎ − 𝑥(𝑘)ℎ)

+
ℎ−1∑︁
𝑖=1

{(𝑟 𝑓 (𝑘)𝑖 − 𝑥(𝑘)𝑖)𝑇𝑄𝑀 (𝑟 𝑓 (𝑘)𝑖 − 𝑥(𝑘)𝑖)

+ 𝑢𝑇𝑖 𝑅𝑀𝑢𝑖},
(20)

where 𝑄𝑀 ∈ R4×4, 𝐹𝑀 ∈ R4×4 and 𝑅𝑀 ∈ R2×2 denotes
weight matrices for tuning control preference on process
error, final error, and control effort, respectively.

One leading advantage of adopting MPC lies in its abil-
ity to impose constraints not only on the generation of the
system’s output but also on the state variables in upcom-
ing time steps. The constraints on input selection typically
relate to the mechanical capabilities of the device, such as
acceleration limit and jerk limit, while the state constraint
prevents the system from exceeding undesirable states re-
garding safety. In this study, the quadratic programming
(QP) problem with constraints was defined as:

𝑚𝑖𝑛 𝐽𝑀

𝑠.𝑡. ¤𝑥 = 𝑓 (𝑥(𝑡), 𝑢(𝑡))
|𝜃𝑖 | ≤ 𝜃𝑚𝑎𝑥 , 𝑖 = 1, 2
𝑢(𝑡) ∈ Υ(𝑡), (21)

where 𝑓 (·) denotes the predict function and can be dis-
cretized into Equation (19) and further derived by sub-
stituting Equation (8) and (9), Υ represents the input con-
straints including jerk and acceleration according to motor
limitation.

Conservatively setting these constraints can mitigate
actuator saturation in hardware experiments [18], which
enables MPC to more effectively anticipate future state
changes in a well-defined dynamic system.

3 Simulations
3.1 Comparative controller design

3.1.1 LQR

According to the state-space derived in Section 2.2, a
Linear Quadratic Regulator (LQR) can be established us-
ing Equation (16) and (17). A standard LQR cost function
is introduced as below:

𝐽𝐿 =

∞∑︁
𝑖=0

{(𝑥𝑐𝑢𝑟𝑟 − 𝑥𝑑𝑒𝑠)𝑇𝑄𝐿 (𝑥𝑐𝑢𝑟𝑟 − 𝑥𝑑𝑒𝑠) + 𝑢𝑇𝑅𝐿𝑢},

(22)
where (𝑥𝑐𝑢𝑟𝑟 − 𝑥𝑑𝑒𝑠) denotes the error between the cur-
rent state and desired state, 𝑢 = −𝐾𝑙𝑞𝑟 (𝑥𝑐𝑢𝑟𝑟 − 𝑥𝑑𝑒𝑠),
𝑄𝐿 ∈ R4×4 and 𝑅𝐿 ∈ R2×2 denote two weight matrices
for precision and control effort trade-off. An optimum

coefficient 𝐾𝑙𝑞𝑟 can be then obtained from solving the op-
timizing problem of 𝑚𝑖𝑛 𝐽𝐿 and implemented to compute
the optimal control vector as a constant matrix.

3.1.2 SMC

Sliding Mode Controller (SMC) employs a sliding sur-
face, which is a hyperplane in the space constituted of
state error and its derivative, and utilizes discontinuous
control to make the system slide towards this plane and
converge towards the origin of the space, which implies
no state error exists and so as the trend it induces. Let
𝑥𝑠 (𝑡) = [𝜃1, 𝜃2]𝑇 , control objective is 𝑥𝑠,𝑑𝑒𝑠 = [0, 0]𝑇 and
let

¥𝑥𝑠 = 𝛿 + Λ𝑢, (23)

where 𝛿 and Λ can be derived from Equation (8) and (9)
as:

𝛿 =

[
− 𝑔 (𝑚ℎ+𝑚𝑚 )

𝑙1𝑚ℎ
𝜃1 + 𝑔𝑚𝑚

𝑙1𝑚ℎ
𝜃2

𝑔 (𝑚ℎ+𝑚𝑚 )
𝑙2𝑚ℎ

𝜃1 − 𝑔 (𝑚ℎ+𝑚𝑚 )
𝑙2𝑚ℎ

𝜃2

]
, (24)

Λ =

[
1

𝑙1𝑚ℎ
− 1

𝑙1𝑚ℎ

− 1
𝑙2𝑚ℎ

𝑚ℎ+𝑚𝑚

𝑙2𝑚ℎ𝑚𝑚

]
. (25)

Set the sliding mode function as

𝑠(𝑡) = Ω(𝑥𝑠 − 𝑥𝑠,𝑑𝑒𝑠) + ( ¤𝑥𝑠 − ¤𝑥𝑠,𝑑𝑒𝑠), (26)

where Ω = diag[𝜛1, 𝜛2] must satisfy Hurwitz condition
of 𝜛1 > 0, 𝜛2 > 0,

¤𝑠 = Ω( ¤𝑥𝑠 − ¤𝑥𝑠,𝑑𝑒𝑠) + ( ¥𝑥𝑠 − ¥𝑥𝑠,𝑑𝑒𝑠), (27)
¤𝑠 = −𝜖𝑡𝑎𝑛ℎ(𝑠) − 𝜌𝑠, (28)

where Equation (28) is the defined expression to achieve
a nearly exponential reaching law toward the sliding plane
with 𝜖 > 0, 𝜌 > 0 so that the Lyapunov function meets its
criterion:

𝑉 =
1
2
𝑠2 ≥ 0,

¤𝑉 = 𝑠 ¤𝑠 ≤ 0.

From Equation (23) - (28), the control input 𝑢 of SMC
could be derived as:

𝑢 = (Λ𝑇Λ)−1 (Λ𝑇 (𝛿 +Ω( ¤𝑥𝑠 − ¤𝑥𝑠,𝑑𝑒𝑠) − 𝜖𝑡𝑎𝑛ℎ(𝑠) − 𝜌𝑠).
(29)

3.2 Comparative simulation results

To validate the effectiveness of proposed proactive con-
trol method and the designed controller, a comparative
software in the loop (SITL) simulation is conducted us-
ing MATLAB & Simulink by creating non-linear dynamic
model plant based on Equation (6) and (7), the constant
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Figure 4. Trolley movement pattern

Figure 5. Simulation result of applied force (𝐹1, 𝐹1)

parameters introduced in the preceding formula derivation
will be assigned according to the actual measurements
from the model in Figure 1b to aids experiments in the
future:

𝑚ℎ = 0.38 [kg], 𝑙1 = 0.6 [m], 𝑔 = 9.81 [N/kg],
𝑚𝑚 = 4 [kg], 𝑙2 = 0.2 [m] .

3.2.1 Ideal condition

The simulated scenario began at time instant 𝑡 = 0[𝑠]
with the initial condition of staying at equilibrium. Mean-
while, a smooth initiation was provided for the trolley with
starting jerk 𝑟𝑡 = 0 by applying a first-order low-pass filter
to a sinusoidal acceleration as shown in Figure 4. The
trolley continued its motion until 𝑡 = 2𝜋[𝑠], reaching its
desired position 𝑟𝑑𝑒𝑠 . Throughout the trolley’s motion and
after the motion terminated, each controller was aimed to
minimize the oscillations in the angles 𝜃1 and 𝜃2.

The simulated configuration for all controllers is identi-
cal, all the sampling frequencies were set to be 100[𝐻𝑧],

Figure 6. Simulation result of swing angle (𝜃1, 𝜃2)

and the 𝑇𝑠 in MPC was set to be 0.05[𝑠] with horizon
ℎ = 10.

The LQR weight matrices and coefficients in SMC were
fixed to

𝑄𝐿 = diag[5, 0.2, 5, 0.2], 𝜖 = 15, 𝜌 = 150,

𝑅𝐿 = diag[5 × 10−3, 5 × 10−3], Ω = diag[2, 4],

as both LQR and SMC rely on state-space where 𝑢 is not
directly equivalent to the applied force, the compensation
of ¥𝑟𝑡 term according to Equation (10) and (11) is needed:

𝐹1 = 𝜐1 + (𝑚ℎ + 𝑚𝑚) ¥𝑟𝑡 , (30)
𝐹2 = 𝜐2 + (𝑚𝑚) ¥𝑟𝑡 . (31)

Weight matrices in MPC are defined as:

𝑄𝑀 = diag[5, 0.18, 5, 0.18],
𝐹𝑀 = diag[10, 1, 10, 1],
𝑅𝑀 = diag[1 × 10−7, 1 × 10−7],

and the OCP in (21) is solved by a multi-shooting method
with each time interval solved by an interior point opti-
mizer (IPOPT) within CasADi [21].

To avoid transient and excessively high outputs, all
forces are constrained by a saturation module within the
threshold of |𝐹1 | , |𝐹2 | ≤ 5[𝑁]. The performance of dif-
ferent controllers was evaluated by observing swing angle
𝜃1 and 𝜃2 as shown in Figure 6.

The results indicate that the proposed proactive ap-
proach with different controllers can make the system keep
a near equilibrium during the acceleration and decelera-
tion of the trolley. This reduction brings the oscillations
from potentially hazardous angles (6.5[𝑑𝑒𝑔]) to virtually
0[𝑑𝑒𝑔]. According to Figure 5, after the trolley moved,
the forces are dominated by the compensation term of ¥𝑟𝑡
instead of states, therefore exhibiting subtle distinctions
among different controller behaviors.
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Figure 7. Swing angle (𝜃1, 𝜃2) with 0.02[𝑠] delay

Figure 8. Swing angle (𝜃1, 𝜃2) with 0.04[𝑠] delay

3.2.2 Condition with delay and noise

However, trolley acceleration (¥𝑟𝑡 ) obtained from sensors
may have delay and noise, so as the states obtained. Thus
in this group of tests, the signal transport delay is consid-
ered and the noise in the sensors is simulated by adding
Gaussian noise to the original states vector 𝑥(𝑡) and ¥𝑟𝑡 :

𝑁 (𝑡) = [𝜃1, ¤𝜃1, 𝜃2, ¤𝜃2, ¥𝑟𝑡 ]𝑇 + 𝑛, (32)

where 𝑛 = [𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5]𝑇 ∼ N(0, 𝜎𝑖) is a vector that
each element is independent and identically distributed
Gaussian random variables with a mean of zero and follow
a normal distribution with standard deviation 𝜎𝑖 , given the
magnitude of 𝑛1−4 is on the order of 10−6 and 𝑛5 is on the
order of 10−4.

Since the latency is not a constant and instead, fluctu-
ates around a baseline. To illustrate this, the signal delay
is modeled as the sum of a constant part and a random
variable with a variance of 0.2. The 𝑇𝑑 of MPC in Equa-
tion (19) can only access the constant part of the delay
and is unaware of the current magnitude of the random
component.

After some preliminary numerical simulations, LQR
and SMC exhibited substantial oscillations and signs of
non-convergence in the presence of delay, leading to the
implementation of fractional gains to 𝑢 (𝐾1 for LQR, 𝐾2
for SMC), the applied forces are in the form below:

𝐹1, 𝑓 𝑖 = 𝜐1𝐾𝑖 + (𝑚ℎ + 𝑚𝑚) ¥𝑟𝑡 , (33)
𝐹2, 𝑓 𝑖 = 𝜐2𝐾𝑖 + (𝑚𝑚) ¥𝑟𝑡 , 𝑖 = 1, 2. (34)

Table 1. Quantified results with increased 𝑚𝑚

Method 𝜃1,𝑚𝑎𝑥 𝜃2,𝑚𝑎𝑥 𝜃1,𝑅𝑀𝑆𝐸 𝜃2,𝑅𝑀𝑆𝐸

LQR -2.38 -2.27 0.86 0.78
SMC -2.40 -2.23 0.85 0.81
MPC -1.31 -1.42 0.78 0.84

Through iterative adjustments, these gains were eventu-
ally set at critical values where the controllers were prone
to collapse, as outlined below:

delay = 0.02[𝑠], 𝐾1 = 0.2, 𝐾2 = 0.25,
delay = 0.04[𝑠], 𝐾1 = 0.04, 𝐾2 = 0.05.

The data depicted in Figures 7 and 8 illustrates the impact
of introducing delay and noise on controller performance.
However, with the aid of fractional gain, it does not lead
to a severe failure. Notably, LQR exhibits high sensitivity,
with decreasing gain causing the persistent squeezing of
state effects. It fails to achieve state convergence as the
delay continues to increase. In comparison, SMC out-
performs LQR, showcasing its resilience to uncertainty
and achieving a considerable extent of convergence. MPC
emerges as the most trustful option, requiring no adjust-
ment like fractional gains. It exhibits only minor fluctua-
tions in the vicinity of the zero axis.

However, the capacity of LQR and SMC to control pure
state changes is significantly diminished by the fractional
gain, particularly in facing unknown disturbances directly
affecting the load and hook.

3.2.3 Condition with actuator saturation

According to the findings presented in Figure 6, the sup-
plied forces 𝐹1 and 𝐹2 already approached the assumed
actuator limit, and further increment may lead to actuator
saturation. Therefore, the MiC mass (𝑚𝑚) was modified
to 8[𝑘𝑔], while maintaining the output saturation opera-
tive within the range of [−5, 5] [𝑁] to test the saturated
performances. Before initiating the simulation, the input
constraints (Υ) of the MPC are defined as:

|𝐹𝑖 | ≤ 5, 𝑖 = 1, 2. (35)

However, Equation (30) and (31) imply that adjustments
applied to the LQR and SMC weight matrices affect the
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Figure 9. Simulation result of swing angle (𝜃1, 𝜃2)
and applied force (𝐹1, 𝐹2) with increased 𝑚𝑚

magnitude of 𝑢, which only has a relatively minor im-
pact on 𝐹1, 𝐹2 compared to the influence of acceleration
compensation when mass is considerable.

The performance of these controllers, as illustrated in
Figure 9 and Table 1 demonstrated how MPC accurately
anticipates future saturation conditions and adjusts input
magnitudes in advance to minimize the maximum swing
angle. The forces applied are recorded in Figure 9, clearly
highlighting that after the initiation of the simulation, both
the LQR and SMC quickly reached their upper limits,
consistently driving the MiC and hook with maximum
output. As the trolley begins to decelerate, there is a
sudden drop in force. In contrast, the output curve of the
MPC remains smooth and continuous, demonstrating a
more amicable interaction with the actuator. The results
indicate that, while maintaining a similar overall RMSE,
MPC exhibits a more conservative swing angle and is more
actuator-friendly. This attribute makes MPC the most
suitable proactive controller for MiC, which inherently
carries a substantial load.

4 Conclusion

This study introduced a proactive hook-load stabiliza-
tion system to address the inherent limitations of under-
actuated overhead cranes by adding two auxiliary inputs.
With the focus on single-axis trolley motion along the jib,
three Multiple-Input Multiple-Output (MIMO) controllers
were compared in simulations, and the main outcomes are:

• Efficacy is verified through three comparative simu-
lations, demonstrating superior performance against
a control-less scenario.

• Resilience to uncertainty and undesired conditions is
confirmed by considering factors like control signal
delays, noisy sensor readings, and actuator saturation.

Results indicated the proposed MPC-based method en-
ables more aggressive trolley motions, enhancing fault
tolerance for novice operators and eventually maximizing
operational efficiency.

Future works of this study involve conducting scaled
experiments and observer design to enhance robustness
under complex integrated disturbances. Meanwhile, the
dimensionality of the system will be expanded to 3-D,
considering the movement of the trolley in the complete
horizontal plane.
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and I. Škrjanc. Nonlinear modeling and robust lmi
fuzzy control of overhead crane systems. Journal
of the Franklin Institute, 358(2):1376–1402, 2021.
doi:10.1016/j.jfranklin.2020.12.003.

[13] Y. Zhao and H. Gao. Fuzzy-model-based control of
an overhead crane with input delay and actuator sat-

uration. IEEE Transactions on Fuzzy Systems, 20(1):
181–186, 2011. doi:10.1109/TFUZZ.2011.2164083.

[14] R. Roman, R. Precup, and E. M. Petriu. Hy-
brid data-driven fuzzy active disturbance rejec-
tion control for tower crane systems. Euro-
pean Journal of Control, 58:373–387, 2021.
doi:10.1016/j.ejcon.2020.08.001.

[15] M. Vukov, W. Van Loock, B. Houska, H. J. Ferreau,
J. Swevers, and M. Diehl. Experimental validation
of nonlinear mpc on an overhead crane using auto-
matic code generation. In 2012 American Control
Conference (ACC), pages 6264–6269. IEEE, 2012.
doi:10.1109/ACC.2012.6315390.

[16] D. Schindele and H. Aschemann. Fast non-
linear mpc for an overhead travelling crane.
IFAC proceedings volumes, 44(1):7963–7968, 2011.
doi:10.3182/20110828-6-IT-1002.03510.

[17] P. Bauer and J. Bokor. Performance com-
parison of siso and mimo low-level controllers
in a special trajectory tracking application.
In 22nd Mediterranean Conference on Control
and Automation, pages 1293–1298. IEEE, 2014.
doi:10.1109/MED.2014.6961554.

[18] H. Chen, Y. Fang, and N. Sun. A swing
constraint guaranteed mpc algorithm for under-
actuated overhead cranes. IEEE/ASME Transac-
tions on Mechatronics, 21(5):2543–2555, 2016.
doi:10.1109/TMECH.2016.2558202.

[19] H. Chen and N. Sun. Nonlinear control of underac-
tuated systems subject to both actuated and unactu-
ated state constraints with experimental verification.
IEEE Transactions on Industrial Electronics, 67(9):
7702–7714, 2019. doi:10.1109/TIE.2019.2946541.

[20] J. Vaughan, D. Kim, and W. Singhose. Con-
trol of tower cranes with double-pendulum pay-
load dynamics. IEEE Transactions on Con-
trol Systems Technology, 18(6):1345–1358, 2010.
doi:10.1109/TCST.2010.2040178.

[21] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawl-
ings, and M. Diehl. CasADi – A software frame-
work for nonlinear optimization and optimal control.
Mathematical Programming Computation, 11(1):1–
36, 2019. doi:10.1007/s12532-018-0139-4.

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

151

https://doi.org/10.1109/TMECH.2021.3126665
https://doi.org/10.1109/TMECH.2022.3210536
https://doi.org/10.1109/TNNLS.2019.2910580
https://doi.org/10.1177/0954406218819029
https://doi.org/10.1080/00207170500197571
https://doi.org/10.1109/TMECH.2010.2103085
https://doi.org/10.1177/0020294019877492
https://doi.org/10.1016/j.jfranklin.2020.12.003
https://doi.org/10.1109/TFUZZ.2011.2164083
https://doi.org/10.1016/j.ejcon.2020.08.001
https://doi.org/10.1109/ACC.2012.6315390
https://doi.org/10.3182/20110828-6-IT-1002.03510
https://doi.org/10.1109/MED.2014.6961554
https://doi.org/10.1109/TMECH.2016.2558202
https://doi.org/10.1109/TIE.2019.2946541
https://doi.org/10.1109/TCST.2010.2040178
https://doi.org/10.1007/s12532-018-0139-4

