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Abstract  

Automated crack inspection, particularly deep 
learning (DL)-based crack segmentation, is crucial for 
the effective and efficient maintenance, repair, and 
operation of civil infrastructure. However, the 
performance of DL-based segmentation methods is often 
limited by the scarcity of pixel-wise labeled crack images. 
This paper presents CrackGauGAN, an automated crack 
image synthesis network that can be used to generate 
realistic and diverse crack image and mask pairs, which 
are instrumental in improving the performance of DL-
based crack segmentation models. The CrackGauGAN is 
developed with three customized improvements based on 
the original GauGAN architecture. Firstly, a Criminisi-
based crack image inpainting operator is introduced 
before the image encoder, enabling the exclusion of crack 
noise interference during background color feature 
extraction. Secondly, a background texture extraction 
method is proposed, assisting the SPADE-based 
generator in decoupling background textures as prior 
information. Lastly, an adaptive pseudo-augmentation 
strategy is introduced in the discriminator, allowing the 
model to be effectively trained on small-scale crack 
datasets. Ablation studies are conducted to prove the 
effectiveness of each component, and further crack image 
generation experiments demonstrate that the 
CrackGauGAN can synthesize various cracks with 
excellent diversity and fidelity. The CrackGauGAN-
generated crack images show average improvements of 
over 1.97 and 7.91 in the Inception Score (IS) and Fréchet 
Inception Distance (FID), respectively, compared to the 
previously most advanced GauGAN and Pix2PixHD. As 
a fully automated crack image mask pair generation 
architecture, the CrackGauGAN can be used to provide 
reliable data support for the application of DL-based 
segmentation models in crack inspection tasks. 
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1 INTRODUCTION 
In recent decades, the aging of bridges and escalating 

traffic loads have markedly intensified the issue of 
structural safety [1, 2]. Cracks, as one of the most 
prevalent and evident indicators of structural safety [3], 
are particularly noteworthy. Early detection and prompt 
maintenance of these cracks can substantially lower 
maintenance expenses over the bridge's operational 
lifespan. 

Traditionally, crack detection has been conducted 
through visual inspections by qualified experts, a process 
that is both costly and time-consuming [4, 5]. This 
approach struggles to keep pace with the escalating 
global demand for bridge inspections, particularly for 
long-span structures [6]. However, the advent of visual 
sensors in recent decades has facilitated the continuous 
acquisition of image data from civil infrastructure, 
utilizing automated robots, unmanned aerial vehicles 
(UAVs), camera-equipped vehicles, and fixed 
surveillance cameras on bridges [7]. The emergence of 
visual recognition models based on deep learning (DL) 
technologies offers the potential for accurate and 
efficient identification of cracks in these images, 
garnering significant interest from both industry and 
academia [8]. 

Recent research in bridge crack image processing has 
leveraged DL techniques, achieving significant 
advancements in crack classification, object detection, 
and segmentation. These techniques are increasingly 
recognized as the most promising solution for automating 
and streamlining detection tasks, potentially replacing 
manual labor [9-11]. While DL technologies represent 
the state-of-the-art in the field of pixel-level crack 
detection, their efficacy hinges on the availability of 
extensive source data for accurate network training. 
Limited datasets can lead to network overfitting, where 
the model excels on training data but exhibits markedly 
reduced performance in unfamiliar environments [12]. 

To mitigate the issue of limited training data, 
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researchers have explored data augmentation techniques 
to expand crack datasets [13, 14]. These methods fall into 
two categories: basic image processing and DL-based 
approaches [15, 16]. Basic image processing techniques, 
such as flipping, cropping, and rotating, generate new 
crack images that retain the original's semantic 
information [17]. However, these methods do not 
significantly enhance the diversity of crack samples, thus 
offering limited improvement in the accuracy of crack 
image recognition. In contrast, DL-based data 
augmentation algorithms, particularly Generative 
Adversarial Networks (GANs), can generate diverse, 
high-resolution images that mirror the distribution of the 
original dataset, thereby effectively enriching the variety 
of training samples [12]. 

Exploring GANs for synthesizing crack images with 
targeted domains has always been a topic worthy of 
discussion [18]. Numerous studies have shown that 
adding GAN-generated images to the original training 
data can make DL-based recognition models more 
accurate [19]. It is important to note that the generated 
images can be used to improve the performance of DL-
based segmentation models on the condition that the 
images have detailed pixel-level annotations. However, 
carrying out the annotation process is an extremely 
tedious task. Therefore, to significantly enhance the 
convenience of using generated images, this study aims 
to use the GAN to generate realistic crack images while 
automatically obtaining their corresponding masks. To 
the best of the authors' knowledge, similar studies have 
not been reported. The main contributions to this work 
are as follows: 

This study proposes a novel Generative Adversarial 
Network (GAN) architecture, named CrackGauGAN, 
which facilitates the generation of realistic crack images 
solely from semantic maps. The core innovation lies in 
integrating crack inpainting and texture priors into the 
GauGAN architecture [20], enabling the network to pre-
decouple three key features in crack image generation - 
crack morphology, texture, and color. This innovation 
allows the SPADE (Spatially-Adaptive Normalization) 
blocks in GauGAN, originally designed for natural scene 
image generation, to be used for creating clear and 
realistic crack images. Furthermore, given the extensive 
image data required for parameter training due to the 
large number of parameters in the original GauGAN 
architecture, the authors implemented an adaptive data 
augmentation strategy in the discriminator. This 
approach allows for effective training of the 
CrackGauGAN on a limited dataset. The well-trained 
model is capable of automatically generating crack image 
and mask pairs, which can be directly used to enhance the 
performance of DL-based segmentation models, thereby 
promoting the application of DL-based crack 
segmentation methods in practical engineering. 

 
Figure 1. The overview architecture of the original 
GauGAN 

2 METHODOLOGY 

2.1 Overview of GauGAN 
The CrackGauGAN model is built upon the GauGAN 

model [20], and it is necessary to explain the composition 
of the GauGAN model when introducing Crack-
GauGAN. The GauGAN architecture, as shown in Figure 
1, mainly consists of three key components: Image 
Encoder, SPADE-based Generator, and Discriminator. 

The Image Encoder is designed to extract the mean 𝜇 
and variance 𝛿  related to the color feature distribution 
from the real image. Then, the extracted mean 𝜇, variance 
𝛿 , and the the Gaussian distribution 𝑥  would be 
denormalized, ultimately obtaining a random vector 𝑧 
that contains the color information of the real image. 

The function of the SPADE-based Generator is to 
receive the random vector 𝑧  generated in the previous 
step and enhance the realism of the pixels in the 
generated image by continuously using the semantic map. 

The Discriminator is customized to process the tensor 
resulting from the integration of the semantic map and 
the generated image. It executes conditional 
discrimination across multiple scales, enabling the 
effective assessment of both global features, like 
background color and crack distribution, and local 
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features, including texture details, in the generated image. 
This functionality is crucial for ensuring the image's 
overall clarity. 

Through continuous training involving a contest 
between the generator and discriminator, GauGAN 
ultimately produces realistic images that match the target 
distribution locations in the input semantic maps. 

2.2 Revised Architecture for Crack Images 
Unlike natural scene images with fixed shapes and 

significant semantic arrangement relationships, crack 
images consist only of cracks with random 
morphological distributions and backgrounds lacking 
semantic information. Consequently, traditional 
GauGAN, when dealing with such hard samples, tends to 
produce blurred and artifact-ridden images due to the 
difficulty in adequately decoupling the deep semantic 
features of cracks and backgrounds during the training 
phase. Additionally, the limited pixel-level annotated 
open-sourced crack datasets make GauGAN prone to 
overfitting during training. The authors address these 
issues effectively through three customized designs, and 
the revised architecture is shown in Figure 2, where the 
customized components are highlighted in red in the 
revised architecture. 

 

 
Figure 2. The overview architecture of the proposed 
CrackGauGAN 

2.2.1 Revision 1: Criminisi-based crack inpainting 

Considering that both cracks and backgrounds lack 
distinct semantic information that can be effectively 
differentiated by the image encoder, the random vector 
𝑧	often fails to accurately represent the color information 
of the image target due to feature coupling. To address 
this, the authors introduce a crack inpainting operation 
before the original image is input into the image encoder. 
This operation repairs the crack areas in the background 
image, thereby eliminating the interference of crack 
pixels in the extraction of the background color 
information vector. 

To effectively repair the crack areas, it is necessary to 
ensure that the background texture of the repaired crack 
areas can transition smoothly. In this study, the Criminisi 
method [21] is employed. The Criminisi method, with its 
advantages in diffusion-based repair and texture 
synthesis, performs well on images with large missing 
areas and those composed of textures and structures. The 
specific implementation method is as follows: 
1. Define the repair area: First, identify the crack areas 

in the crack image that need to be repaired from the 
input semantic labels; 

2. Initialize priority: The algorithm then assigns 
priorities to the edge pixels of the area to be repaired 
based on structural information like pixel gradients 
and texture information based on the proportion of 
known pixels; 

3. Select the source area: The algorithm searches for an 
undamaged area in the image that best matches the 
texture and structure at the current highest priority 
edge as the source area for repair; 

4. Texture and structure replication: Copy the selected 
source area to the edge location with the highest 
priority, thereby filling a part of the repair area; 

5. Update priorities and repair area: After each fill, the 
algorithm updates the edges of the repair area and 
the priorities of the corresponding pixels, and repeats 
steps 3 to 5 until the entire repair area is filled. 

2.2.2 Revision 2: DTCWT and PSO-based 
background texture pre-extraction 

The visual quality judgment of crack images by the 
naked eye primarily relies on three indicators: 
background color, crack distribution, and background 
texture. The background color and crack distribution 
have already been individually represented by the image 
encoder and the semantic map, respectively. To enable 
the network to effectively control all three critical 
indicators that determine the generation of crack images, 
it is necessary to add texture prior information to the 
network to help decouple texture information in advance. 

Specifically, this study introduces an image texture 
feature extraction algorithm based on Dual-Tree 
Complex Wavelet Transform (DTCWT) and Particle 
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Swarm Optimization (PSO), designed to introduce 
texture prior information of the crack background into 
each SPADE block. Compared to traditional image 
texture feature extraction algorithms like Canny and 
Sobel, the texture information extraction method 
proposed in this study effectively leverages the efficient 
texture analysis capability of DTCWT and the global 
search advantage of PSO, thereby enhancing the 
accuracy and efficiency of image texture feature 
extraction. The implementation details of the DTCWT 
and PSO methods can be found in [22]. 
 

 
Figure 3. Workflow for adaptive pseudo-augmentation 
strategy in the discriminator 

2.2.3 Revision 3: Adaptive pseudo-augmentation 
strategy in the Discriminator 

To mitigate the potential overfitting issue due to the 
insufficiency of initial training source crack images, a 
new data augmentation strategy called adaptive pseudo-
augmentation strategy (APA) is introduced in the 
discriminator, as shown in Figure 3. 

Researchers have been challenged by obtaining well-
trained generative models based on carefully constructed 
GAN frameworks, with traditional methods relying on a 
large number of training images to ensure the model 
avoids overfitting. For the GauGAN architecture, 
designed for generating natural scene images, open-
source datasets like Pascal VOC 2012, COCO, and 
Cityscapes, which contain tens of thousands of pixel-
level annotated images, have alleviated the data issue to 
some extent. However, due to the difficulties in 
collecting crack images and the reliance on professional 
personnel for annotation, there is no such large-scale 
open-source dataset available for cracks. Therefore, 
effectively training CrackGauGAN on small sample 
datasets becomes the problem to be addressed in this 
section. To this end, the authors designed a data 
augmentation pipeline for the limited crack training 
samples, called the adaptive pseudo-augmentation 

Strategy, first proposed by Huang et al. [23]. It can 
dynamically adjust the intensity of augmentation based 
on the degree of overfitting in the field of medical 
imaging generation, without leaking augmentation 
patterns. Its effectiveness has been proven through the 
ablation study described in section 4.1.3. 

3 IMPLEMENTATION DETAILS AND 
EXPERIMENTS 

3.1 Datasets 
The open-source crack segmentation dataset HRCD-282, 
previously established by the authors, was used as the 
data source for model training and evaluation. From 
HRCD-282, 1200 crack patch images with a resolution 
of 256×256 and their corresponding crack labels were 
cropped from the included HR crack images to serve as 
training data for CrackGauGAN. Additionally, to assess 
the quality of images generated by the model, 1200 non-
crack patch images with the same resolution of 256×256 
were collected from the backgrounds of the selected 
original HR crack images. These 1200 non-crack 
background images, along with crack labels of the same 
size, were input into the well-trained CrackGauGAN 
model to generate pseudo-crack images under the 
corresponding backgrounds. 

3.2 Implementation Details 
In this study, all experiments were conducted on a 

high-performance workstation equipped with an Intel 
Core i9-9820X CPU and NVIDIA RTX 3090 Ti GPU. 
The workstation runs on the Ubuntu 20.04 LTS operating 
system, providing a stable and efficient computing 
environment. Furthermore, to ensure the fairness of 
comparative experiments, all networks involved in the 
comparison were implemented under the PyTorch 
framework. 

To optimize the training effectiveness of the Crack-
GauGAN model, the authors carefully selected the 
following key hyperparameters. The initial learning rate 
was set at 0.0001 to ensure stable gradient descent, and a 
learning rate decay strategy was adopted to address 
potential overfitting during training. Considering the 
limitations of hardware resources, the batch size was 
cautiously set to 8 to balance memory consumption and 
training efficiency. Additionally, the Adam optimizer 
was chosen, with its beta1 and beta2 parameters set to 0.5 
and 0.999, respectively, to take advantage of its adaptive 
learning rate. The weight decay parameter was set at 
1×10-4 to further prevent model overfitting. 

In terms of the update strategy for the generator and 
discriminator, a 1:1 ratio was followed to ensure 
balanced optimization of both during training. The 
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weighting of the loss function was also carefully adjusted 
to balance the impact of adversarial loss, feature 
matching loss, and VGG perceptual loss, thereby 
optimizing the overall performance of the model. 
Considering the importance of crack image details and 
the limitations of computational resources, a training 
image size of 256 × 256 was chosen. Finally, to ensure 
that the model learned sufficiently and converged, the 
number of training epochs was set to 900. The selection 
of these hyperparameters was based on a comprehensive 
analysis of previous studies and the results of preliminary 
experiments, aiming to achieve the best training effect 
and image quality. 

3.3 Evaluation Indicators 
To comprehensively evaluate the model performance 

of CrackGauGAN, the authors conducted qualitative 
assessments through visualized generation results of all 
models and also introduced two quantitative evaluation 
metrics: Inception Score (IS) and Fréchet Inception 
Distance (FID). IS evaluates the diversity and clarity of 
the generated images, while FID measures the distance 
between the generated images and real images in the 
feature space. 

4 EXPERIMENTS AND RESULTS 
ANALYSIS 

4.1 Ablation Studies 
4.1.1 Ablation study of the Criminisi-based crack 

inpainting 

Table 1 quantitatively shows the ablation study for 
the image background inpainting. It can be found that by 
removing the background inpainting, the training process 
becomes more difficult to converge, resulting in a larger 
FID score and a smaller IS score, which indicates a 
decrease in the realism and clarity of the generated 
images. This is because crack images differ from natural 
scene images in that there is no significant color contrast 
difference between the foreground and background, and 
neither possesses a fixed topological structure. This 
makes it challenging for the image encoding architecture 
to effectively decouple their deep semantic information. 
As a result, the network's process of extracting 
background color features is easily disrupted by crack 
features, leading to a significant decline in the quality of 
color feature extraction. Experimental results confirm 
that repairing crack pixels in the image background 
effectively mitigates this issue.  

4.1.2 Ablation study of the DTCWT and PSO-
based texture pre-extraction 

This ablation study primarily focuses on the impact 

of the texture prior information intensity, extracted by the 
proposed DTCWT and PSO operations, on the quality of 
image generation. Figure 4 illustrates these comparisons 
across texture information intensities of 0%, 25%, 50%, 
75%, and 100%. A visual evaluation of the reconstruction 
results in Figure 4 revealed that the model utilizing 100% 
texture information extraction intensity achieved the 
closest resemblance to the original image. Furthermore, 
it was observed that at texture information extraction 
intensities below 50%, the GAN struggled to 
independently decouple crack features from background 
texture information. This challenge is attributed to the 
excessive redundancy in low semantic information, a 
consequence of the random data distribution in crack 
images. Consequently, early decoupling of high-intensity 
texture information significantly enhances the network's 
proficiency in distinguishing and capturing both 
background semantic information and crack features, a 
critical factor for reconstructing high-quality crack 
images. 

Table 1. The impact of the proposed inpainting 
operation on the quality of generated images and the 

difficulty of the model convergence 

Criminisi-based crack 
inpainting opeartion IS(#) FID($) Iterations 

(epoch) 
W/O 3.43 34.56 1700 
W/ 5.26 26.33 900 

 

 
Figure 4. Visualization results of crack images generated 
by models with added texture prior information of 
varying intensities 

4.1.3 Ablation study of adaptive pseudo-
augmentation Strategy 

Figure 5 summarizes the impact of the adaptive 
pseudo-augmentation (APA) strategy on both the 
generator and discriminator losses in the CrackGauGAN. 
The implementation of the APA strategy led to a notable 
reduction in the oscillation amplitudes of both losses 
during training on a small-scale dataset. This indicates 
that the APA strategy effectively stabilized the feature 
learning of both the discriminator and generator within 
the bounds of maximum gradient convergence. This is 
particularly significant for the discriminator loss, where 
the extremely limited training data can rapidly lead to 
local overfitting, thereby creating a false impression of 
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model convergence. The APA strategy successfully 
counters this issue. Analysis of the discriminator (D) loss 
and generator (G) loss behaviors suggests that the APA 
strategy not only prevents overfitting in the discriminator 
but also mitigates the problem of gradient vanishing, 
thereby ensuring the generator's continuous learning. 
 

 
Figure 5. The behavior of D Loss and G Loss of the 
proposed architecture with and without APA strategy in 
the training phase 

4.2 Performance Comparison with Current 
State-of-the-art Methods 

To demonstrate the advancement of the method 
proposed in this study, it was compared with the current 
state-of-the-art semantic image synthesis methods: 
GauGAN [23] and pix2pixHD model [24]. The Ground 

Truth (GT) used for evaluating the quality of the 
generated images originates from the HR crack images 
collected by the authors, as described in section 3.1. For 
each GT, the corresponding crack mask and the non-
crack background images were used as inputs for the 
models. Additionally, it is important to note that to ensure 
fairness in comparison, all models involved in the 
experiment were trained using the default 
hyperparameters provided by their original authors. 

Qualitative Results Analysis: Figure 6 illustrates 
some of the crack images generated by all the methods 
involved in the comparison. It is intuitively evident from 
the figure that all the compared methods can generate 
crack images broadly consistent with the distribution of 
the crack semantic map. Among these, the crack images 
synthesized through CrackGauGAN are closer to real 
crack images. Specifically, they exhibit fewer artifacts, 
richer details, and clearer edges in terms of visual quality. 
As for the Pix2PixHD, due to the lack of decoupling 
operations for cracks and background textures during the 
training phase, tends to lose background texture 
information in the generated images. Although GauGAN, 
which employs SPADE, can utilize the spatially adaptive 
mechanism to improve the entangled coupling between 
background and crack features, the limited crack training 
samples restrict its performance, resulting in the 
generated crack background textures being blurred. 
Further observation of the crack images generated by the 
CrackGauGAN reveals that different levels of noise input 
do not affect the clarity of the images or the distribution 
of cracks in the images, but only alter the distribution of 
background textures. This is significant for enhancing the 
diversity of the images. 

 

 
Figure 6. Qualitative comparison of CrackGauGAN with two state-of-the-art image synthesis methods 
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Table 2. Quantitative results of the quality of images 
generated by CrackGauGAN with different intensity 
noise added and the current state-of-the-art methods 

Model The intensity of 
random noise added IS FID 

Pix2PixHD / 4.20 31.65 
GauGAN / 4.78 29.38 

CrackGauGAN 

20% 6.47 22.74 
40% 6.53 22.09 
60% 6.43 22.76 
80% 6.39 23.12 

Quantitative Results Analysis: Table 2 reports the 
quantitative results of the crack image quality generated 
using different methods. As can be seen from Table 2, 
adding different proportions of random noise has almost 
no impact on the evaluation metrics. This can be inferred 
from the qualitative analysis results shown in Figure 4, as 
the random noise only affects the distribution of the 
background texture and does not impact the clarity of the 
background texture or other details related to image 
quality. Moreover, under four types of noise inputs, the 
IS and FID of the images generated by GauGAN 
fluctuate within the range of 6.46±0.07 and 22.61±0.52, 
respectively. This represents an average improvement of 
over 1.97 and 7.91 compared to the images generated by 
Pix2PixHD and GauGAN, respectively. This effectively 
confirms the advanced nature of the method proposed in 
this study. 

5 CONCLUSION 
This paper presents a novel CrackGauGAN, a 

semantically-driven generative adversarial network 
specifically tailored for crack image generation. By 
effectively decoupling three key features for the 
generator, including background color, background 
texture, and crack morphology, the CrackGauGAN is 
capable of generating realistic crack images with high 
fidelity and diverse data distribution types. Its 
performance surpasses that of the most advanced 
semantic layout-based GANs, with average 
improvements in Inception Score (IS) and Fréchet 
Inception Distance (FID) exceeding 1.97 and 7.91, 
respectively, compared to GauGAN and Pix2PixHD. 

The proposed generative model can quickly generate 
a large number of realistic crack image datasets with 
pixel-level labels for in-service bridges, overcoming the 
challenge of insufficient training samples with similar 
data distribution types. In the future, this approach will 
be extended to create customized crack image datasets 
for additional bridges and train corresponding crack 
detection models. Such models will facilitate accurate 
and efficient intelligent detection methods in engineering 

practice, including bridges, hydropower projects and 
historical buildings, enabling evidence-based 
infrastructure maintenance and management decisions. 

Acknowledgement  
This work is supported by Horizon Europe project D-
HYDROFLEX (Project ID: 101122357) and Horizon 
Europe project INHERIT (Project ID: 101123326). 

References 
[1] Zhang C, Chang C-C, Jamshidi M. Concrete Bridge 

Surface Damage Detection Using A Single-Stage 
Detector. Computer-Aided Civil And Infrastructure 
Engineering, 35(4):389-409, 2020. 

[2] Abu Dabous S, Feroz S. Condition Monitoring Of 
Bridges With Non-Contact Testing Technologies. 
Automation In Construction, 116:103224, 2020. 

[3] Yu Z, Shen Y, Shen C. A Real-Time Detection 
Approach For Bridge Cracks Based On Yolov4-
FPM. Automation In Construction, 122:103514, 
2021. 

[4] Jiang S, Zhang J. Real-Time Crack Assessment 
Using Deep Neural Networks With Wall-Climbing 
Unmanned Aerial System. Computer-Aided Civil 
And Infrastructure Engineering, 35(6):549-64, 
2020. 

[5] Rodriguez-Lozano FJ, LeÓn-GarcÍa F, GÁmez-
Granados JC, Palomares JM, Olivares J. Benefits 
Of Ensemble Models In Road Pavement Cracking 
Classification. Computer-Aided Civil And 
Infrastructure Engineering, 35(11):1194-208, 2020. 

[6] Guo F, Qian Y, Liu J, Yu H. Pavement Crack 
Detection Based On Transformer Network. 
Automation In Construction, 145:104646, 2023. 

[7] Bianchi E, Abbott Amos L, Tokekar P, Hebdon M. 
COCO-Bridge: Structural Detail Data Set For 
Bridge Inspections. Journal Of Computing In Civil 
Engineering, 35(3):04021003, 2021. 

[8] Alipour M, Harris Devin K, Miller Gregory R. 
Robust Pixel-Level Crack Detection Using Deep 
Fully Convolutional Neural Networks. Journal Of 
Computing In Civil Engineering, 33(6):04019040, 
2019. 

[9] Corbally R, Malekjafarian A. A Deep-Learning 
Framework For Classifying The Type, Location, 
And Severity Of Bridge Damage Using Drive-By 
Measurements. Computer-Aided Civil And 
Infrastructure Engineering, 37(3):1163-1188, 2023. 

[10] Yang Q, Shi W, Chen J, Lin W. Deep Convolution 
Neural Network-Based Transfer Learning Method 
For Civil Infrastructure Crack Detection. 
Automation In Construction. 116:103199, 2020. 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

7



[11] Zhou S, Canchila C, Song W. Deep Learning-Based 
Crack Segmentation For Civil Infrastructure: Data 
Types, Architectures, And Benchmarked 
Performance. Automation In Construction, 
146:104678, 2023. 

[12] Shi J, Liu W, Zhou G, Zhou Y. Autoinfo GAN: 
Toward A Better Image Synthesis GAN 
Framework For High-Fidelity Few-Shot Datasets 
Via NAS And Contrastive Learning. Knowledge-
Based Systems, 276:110757, 2023. 

[13] Liu B, Zhang T, Yu Y, Miao L. A Data Generation 
Method With Dual Discriminators And 
Regularization For Surface Defect Detection Under 
Limited Data. Computers In Industry, 151:103963, 
2023. 

[14] Liu Q, Zhang Q, Liu W, Chen W, Liu X, Wang X. 
WSDS-GAN: A Weak-Strong Dual Supervised 
Learning Method For Underwater Image 
Enhancement. Pattern Recognition, 143:109774, 
2023. 

[15] Xu G, Yue Q, Liu X. Real-Time Monitoring Of 
Concrete Crack Based On Deep Learning 
Algorithms And Image Processing Techniques. 
Advanced Engineering Informatics, 58:102214, 
2023. 

[16] Li S, Zhao X. High-Resolution Concrete Damage 
Image Synthesis Using Conditional Generative 
Adversarial Network. Automation In Construction, 
147:104739, 2023. 

[17] Liu X, Pedersen M, Wang R. Survey Of Natural 
Image Enhancement Techniques: Classification, 
Evaluation, Challenges, And Perspectives. Digital 
Signal Processing, 127:103547, 2022. 

[18] Zhang G, Cui K, Hung T-Y, Lu S, Editors. Defect-
GAN: High-Fidelity Defect Synthesis For 
Automated Defect Inspection. Proceedings Of The 
IEEE/CVF Winter Conference On Applications Of 
Computer Vision, Pages 35–43, Virtual Online, 
2021. 

[19] Jin T, Ye X, Li Z. Establishment And Evaluation Of 
Conditional GAN-Based Image Dataset For 
Semantic Segmentation Of Structural Cracks. 
Engineering Structures, 285:116058, 2023. 

[20] Park T, Liu M-Y, Wang T-C, Zhu J-Y, Editors. 
Semantic Image Synthesis With Spatially-Adaptive 
Normalization. Proceedings Of The IEEE/CVF 
Conference On Computer Vision And Pattern 
Recognition, Pages 56–64, Long Beach, America, 
2019. 

[21] Yao F. Damaged Region Filling By Improved 
Criminisi Image Inpainting Algorithm For Thangka. 
Cluster Computing, 22:13683-91, 2019. 

[22] Chi J, Eramian M. Enhancing Textural Differences 
Using Wavelet-based Texture Characteristics 
Morphological Component Analysis: A 

Preprocessing Method for Improving Image 
Segmentation. Computer Vision and Image 
Understanding, 158:49-61, 2017. 

[23] Huang X, Belongie S, editors. Arbitrary Style 
Transfer in Real-time with Adaptive Instance 
Normalization. Proceedings of the IEEE 
International Conference on Computer Vision, 
page: 77-85, Venice, Italy, 2017. 

[24] Wang T-C, Liu M-Y, Zhu J-Y, Tao A, Kautz J, 
Catanzaro B, editors. High-resolution Image 
Synthesis and Semantic Manipulation with 
Conditional Gans. Proceedings of the IEEE 
Conference on Computer Vision and Pattern 
Recognition, page: 121-129, Salt Lake City, 
America, 2018. 

 

41st International Symposium on Automation and Robotics in Construction (ISARC 2024)

8


